% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2.2em}

Homework 10

Mos Kullathon
921425216

1. Determine whether the following series is convergent or divergent. We may use any tests available

(i) n=11n22n\sum_{n=1}^\infty \frac{1}{n^2 2^n}

As a pp-series where p=2p=2, n=11n2\displaystyle\sum_{n=1}^\infty\frac{1}{n^2} converges. Since 1n21n22n\displaystyle\frac{1}{n^2}\ge\frac{1}{n^22^n} for n1n\ge1, by comparison test n=11n22n\displaystyle\sum_{n=1}^\infty \frac{1}{n^22^n} converges.

(ii) n=23n3+2n2+2n41\sum_{n=2}^\infty \frac{3n^3+2n^2+2}{n^4-1}

Let an=3n3+2n2+2n41\displaystyle a_n=\frac{3n^3+2n^2+2}{n^4-1} and bn=1n\displaystyle b_n=\frac{1}{n}.

Then,
anbn=n(3n3+2n2+2)n41=3n4+2n3+2nn41limnanbn=limn3n4+2n3+2nn41=3.\frac{a_n}{b_n} =\frac{n(3n^3+2n^2+2)}{n^4-1} =\frac{3n^4+2n^3+2n}{n^4-1} \\ \therefore \lim_{n\to\infty}\frac{a_n}{b_n} =\lim_{n\to\infty}\frac{3n^4+2n^3+2n}{n^4-1}=3.

Since anbn3\displaystyle\frac{a_n}{b_n}\to 3 and n=1bn=n=11n\displaystyle\sum_{n=1}^\infty b_n = \sum_{n=1}^\infty\frac{1}{n} is a pp-series such that p=1p=1 (and as such, diverges), by limit comparison test n=23n3+2n2+2n41\displaystyle\sum_{n=2}^\infty \frac{3n^3+2n^2+2}{n^4-1} also diverges.

(iii) n=1n1/3(n3/21)1/2\sum_{n=1}^\infty \frac{n^{1/3}}{(n^{3/2}-1)^{1/2}}

The first term is undefined. Therefore, the sum does not exist.
n=1    11/3(13/21)1/2=10n=1\implies\frac{1^{1/3}}{(1^{3/2}-1)^{1/2}}=\frac{1}{0}

(iv) n=1n2lnnn5+2n1\sum_{n=1}^\infty \frac{n^2\ln n}{n^5+2n-1}

Let an=n2lnnn5+2n1\displaystyle a_n = \frac{n^2\ln n}{n^5+2n-1} and bn=nϵn3\displaystyle b_n = \frac{n^\epsilon}{n^3} for some small values of ϵ>0\displaystyle\epsilon>0.

Then,
anbn=n2lnnn5+2n1n3nϵ=n5lnnnϵ(n5+2n1)limnanbn=limnlnnnϵ=0.\frac{a_n}{b_n} = \frac{n^2\ln n}{n^5+2n-1}\cdot \frac{n^3}{n^\epsilon} = \frac{n^5\ln n}{n^\epsilon(n^5+2n-1)} \\ \therefore \lim_{n\to\infty}\frac{a_n}{b_n} = \lim_{n\to\infty}\frac{\ln n}{n^\epsilon} = 0.

Since anbn0\displaystyle\frac{a_n}{b_n}\to0 and n=0bn=n=0nϵn3\displaystyle\sum_{n=0}^\infty b_n = \sum_{n=0}^\infty\frac{n^\epsilon}{n^3} converges by pp-series for 0<ϵ<20<\epsilon<2, then by limit comparison test, n=0n2lnnn5+2n1\displaystyle\sum_{n=0}^\infty\frac{n^2\ln n}{n^5+2n-1} also converges.

(v) n=1(1)n2n+1n!\sum_{n=1}^\infty (-1)^{n^2}\frac{n+1}{n!}

Let an=(1)n2n+1n!\displaystyle a_n=(-1)^{n^2}\frac{n+1}{n!}.

Then,
an+1=(1)(n+1)2(n+1)+1(n+1)!=(1)n2+2n+1(n+2)(n+1)n!a_{n+1}=\frac{(-1)^{(n+1)^2}(n+1)+1}{(n+1)!} =\frac{(-1)^{n^2+2n+1}(n+2)}{(n+1)n!}

and
an+1an=(1)n2+2n+1(n+2)(n+1)n!n!(1)n2(n+1)=(1)2n+1(n+2)(n+1)2limnan+1an=0<1.\begin{align*} \left|\frac{a_{n+1}}{a_n}\right| &= \left| \frac{(-1)^{\cancel{n^2}+2n+1}(n+2)} {(n+1)\cancel{n!}} \cdot \frac{\cancel{n!}}{\cancel{(-1)^{n^2}}(n+1)} \right| \\ &= \left| \frac{(-1)^{2n+1}(n+2)}{(n+1)^2} \right| \end{align*} \\ \therefore\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|=0<1.

By ratio test, the series converges absolutely.

(vi) n=1(n!)3(3n)!\sum_{n=1}^\infty \frac{(n!)^3}{(3n)!}

Let an=(n!)3(3n)!\displaystyle a_n=\frac{(n!)^3}{(3n)!}.

Then,
an+1=((n+1)!)3(3(n+1))!=((n+1)!)3(3n+3)!=((n+1)n!)3(3n+3)(3n+2)(3n+1)(3n)!=(n+1)3(n!)3(3n+3)(3n+2)(3n+1)(3n)!\begin{align*} a_{n+1} &=\frac{((n+1)!)^3}{(3(n+1))!} \\ &=\frac{((n+1)!)^3}{(3n+3)!} \\ &= \frac{((n+1)n!)^3}{(3n+3)(3n+2)(3n+1)(3n)!} \\ &= \frac{(n+1)^3(n!)^3}{(3n+3)(3n+2)(3n+1)(3n)!} \end{align*}

and
an+1an=(n+1)3(n!)3(3n+3)(3n+2)(3n+1)(3n)!(3n)!(n!)3=(n+1)3(3n+3)(3n+2)(3n+1)limnan+1an=133=127<1.\begin{align*} \left|\frac{a_{n+1}}{a_n}\right| &= \left| \frac{(n+1)^3\cancel{(n!)^3}} {(3n+3)(3n+2)(3n+1)\cancel{(3n)!}} \cdot \frac{\cancel{(3n)!}}{\cancel{(n!)^3}} \right| \\ &= \left| \frac{(n+1)^3} {(3n+3)(3n+2)(3n+1)} \right| \end{align*} \\ \therefore \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{1}{3^3}=\frac{1}{27}<1.

By ratio test, the series converges absolutely.

(vii) n=1(n3n+1)n\sum_{n=1}^\infty (\frac{n}{3n+1})^n

Let an=(n3n+1)n\displaystyle a_n = \(\frac{n}{3n+1}\)^n.

Then,
an1n=(n3n+1)n1n=n3n+1=n3n+1,n1|a_n|^{\frac{1}{n}} =\left|\(\frac{n}{3n+1}\)^n\right|^\frac{1}{n} =\left|\frac{n}{3n+1}\right| =\frac{n}{3n+1}, \quad n\ge 1

and
limnan1n=limnn3n+1=13<1.\lim_{n\to\infty}|a_n|^\frac{1}{n} = \lim_{n\to\infty}\frac{n}{3n+1}=\frac{1}{3}<1.

By root test, the series converges absolutely.

(viii) n=2(1)nlnn\sum_{n=2}^\infty \frac{(-1)^n}{\ln n}

Let an=1lnn\displaystyle a_n = \frac{1}{\ln n}.

Since lnn\ln n is monotonically increasing, its reciprocal an=1lnn\displaystyle a_n = \frac{1}{\ln n} must be monotonically decreasing.

Then,
limnan=limn1lnn=0.\lim_{n\to\infty}a_n =\lim_{n\to\infty}\frac{1}{\ln n} =0.

By alternating series test, the series converges.

(ix) n=2(1)nlnn\sum_{n=2}^\infty (-1)^n\ln n

limnlnn=\lim_{n\to\infty}\ln n = \infty

By divergence test, the series diverges.

2. Find the radius of convergence and interval of convergence for the following power series

(i) n=01n2nxn\sum_{n=0}^\infty\frac{1}{n2^n}x^n

an=xnn2n,an+1=xn+1(n+1)2n+1an+1an=xn+1(n+1)2n+1n2nxn=xn2(n+1)=xn2n+2,n0L=limnan+1an=x2    L<1    x<2a_n=\frac{x^n}{n2^n},\quad a_{n+1}=\frac{x^{n+1}}{(n+1)2^{n+1}} \\ \begin{align*} \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{x^{n+1}}{(n+1)2^{n+1}} \cdot\frac{n2^n}{x^n} \right| \\ &= \left| \frac{xn}{2(n+1)} \right| \\ &= |x|\frac{n}{2n+2},\quad n\ge0 \end{align*} \\ % \frac{n}{2n+2}\to\frac{1}{2} % \implies|x|\frac{n}{2n+2}\to L<1 \iff |x|<2 \\ % \therefore R=2 % \\ \therefore L=\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{|x|}{2} \implies L <1 \iff |x|<2

Since
x<2    2<x<2,|x|<2\iff -2<x<2,

by ratio test, the series converges absolutely for 2<x<2-2<x<2 centered at x=0x=0.

x=2    n=01n2n(2)n=n=0(1)nnx=-2\implies \sum_{n=0}^\infty\frac{1}{n2^n}(-2)^n =\sum_{n=0}^\infty\frac{(-1)^n}{n}

Since 1n0\displaystyle\frac{1}{n}\to0, by alternating series test, the series converges at x=2x=-2.

x=2    n=01n2n(2)n=n=01nx=2\implies \sum_{n=0}^\infty\frac{1}{n2^n}(2)^n =\sum_{n=0}^\infty\frac{1}{n}

At x=2x=2, the series is a pp-series such that p=1p=1. Therefore, the series diverges at x=2x=2.

As such:

(ii) n=0(x1)nn\sum_{n=0}^\infty\frac{(x-1)^n}{\sqrt{n}}

an=(x1)nn,an+1=(x1)n+1n+1an+1an=(x1)n+1n+1n(x1)n=n(x1)n+1=x1nn+1,n0L=limnan+1an=x1    L<1    x1<1a_n=\frac{(x-1)^n}{\sqrt{n}},\quad a_{n+1}=\frac{(x-1)^{n+1}}{\sqrt{n+1}} \\ \begin{align*} \left|\frac{a_{n+1}}{a_n}\right| &= \left| \frac{(x-1)^{n+1}}{\sqrt{n+1}} \cdot\frac{\sqrt{n}}{(x-1)^n} \right| \\ &= \left| \frac{\sqrt{n}(x-1)}{\sqrt{n+1}} \right| \\ &= |x-1|\frac{\sqrt{n}}{\sqrt{n+1}},\quad n\ge0 \end{align*} \\ \therefore L=\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|=|x-1| \implies L<1 \iff |x-1|<1 \\

Since
x1<1    1<x1<1    0<x<2,|x-1|<1 \iff -1<x-1<1 \iff 0<x<2,

by ratio test, the series converges absolutely for 0<x<20<x<2 centered at x=1x=1.

x=0    n=0(01)nn=n=0(1)nnx=0\implies\sum_{n=0}^\infty\frac{(0-1)^n}{\sqrt{n}} =\sum_{n=0}^\infty\frac{(-1)^n}{\sqrt{n}}

Since 1n0\displaystyle\frac{1}{\sqrt{n}}\to0, by alternating series test, the series converges at x=0x=0.

x=2    n=0(21)nn=n=01nn=n=01n1/2x=2\implies\sum_{n=0}^\infty\frac{(2-1)^n}{\sqrt{n}} =\sum_{n=0}^\infty\frac{1^n}{\sqrt{n}} =\sum_{n=0}^\infty\frac{1}{n^{1/2}}

At x=2x=2, the series is a pp-series such that p=12\displaystyle p=\frac{1}{2}. Therefore, the series diverges at x=2x=2.

As such:

(iii) n=21nlnnxn\sum_{n=2}^\infty \frac{1}{n\ln n}x^n

an=xnnlnn,an+1=xn+1(n+1)ln(n+1)an+1an=xn+1(n+1)ln(n+1)nlnnxn=nxlnn(n+1)ln(n+1)L=limnan+1an=limnnxlnn(n+1)ln(n+1)=limnnxn+1limnlnnln(n+1)=xlimn1n1n+1=x    L<1    x<1a_n=\frac{x^n}{n\ln n},\quad a_{n+1}=\frac{x^{n+1}}{(n+1)\ln(n+1)} \\ \begin{align*} \left|\frac{a_{n+1}}{a_n}\right| &= \left| \frac{x^{n+1}}{(n+1)\ln(n+1)}\cdot \frac{n\ln n}{x^n} \right| \\ &= \left| \frac{nx\ln n}{(n+1)\ln(n+1)} \right| \end{align*} \\ \begin{align*} \therefore L = \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| &= \lim_{n\to\infty}\left| \frac{nx\ln n}{(n+1)\ln(n+1)} \right| \\ &= \lim_{n\to\infty} \left| \frac{nx}{n+1} \right| \cdot\lim_{n\to\infty} \left|\frac{\ln n}{\ln(n+1)}\right| \\ &= |x| \cdot \lim_{n\to\infty} \left|\frac{\frac{1}{n}}{\frac{1}{n+1}}\right| \\ &= |x| \\ \implies L <1 &\iff |x| <1 \end{align*}

Since
x<1    1<x<1,|x|<1\iff-1<x<1,

by ratio test, the series converges absolutely for 1<x<1-1<x<1.

x=1    n=21nlnn(1)nx=-1\implies \sum_{n=2}^\infty \frac{1}{n\ln n}(-1)^n

Since 1nlnn0\displaystyle\frac{1}{n\ln n}\to0, by alternating series test, the series converges at x=1x=-1.

x=1    n=21nlnn(1)n=n=21nlnnx=1\implies \sum_{n=2}^\infty \frac{1}{n\ln n}(1)^n =\sum_{n=2}^\infty \frac{1}{n\ln n}

Let g(x)=1xlnx\displaystyle g(x)=\frac{1}{x\ln x}. Since g(x)<0g'(x)<0 for x2x\ge2, we apply the integral test.

u=lnx     ⁣du=1x ⁣dx     ⁣dx=x ⁣dux=2    u=ln2x=n    u=lnnlimn2n1xlnx ⁣dx=limnln2lnnx ⁣duxu=limn[lnu]ln2lnn=limnln(lnn)ln(ln2)=\begin{darray}{cc} u=\ln x &\implies& \dd u=\frac{1}{x}\dd x \\ &\iff&\dd x = x\dd u \\ x=2 &\implies& u = \ln 2 \\ x=n &\implies& u = \ln n \end{darray} \\ \begin{align*} \lim_{n\to\infty}\int_2^n\frac{1}{x\ln x}\dd x &= \lim_{n\to\infty}\int_{\ln 2}^{\ln n} \frac{x\dd u}{xu} \\ &= \lim_{n\to\infty} \bigg[\ln u\bigg]_{\ln 2}^{\ln n} \\ &= \lim_{n\to\infty}\ln(\ln n)-\ln(\ln 2) \\ &= \infty \end{align*}

By integral test, the series diverges at x=1x=1.

As such:

(iv) n=2(2+1n)nxn\sum_{n=2}^\infty (2+\frac{1}{n})^n x^n

an=(2+1n)nxnan1n=(2+1n)xL=limnan1n=2x    L<1    2x<1a_n = \(2+\frac{1}{n}\)^n x^n \\ \begin{align*} |a_n|^\frac{1}{n} &= \left| \(2+\frac{1}{n}\) x \right| \end{align*} \\ \therefore L=\lim_{n\to\infty}|a_n|^\frac{1}{n} = |2x| \implies L < 1 \iff |2x|<1

Since
2x<1    x<12    12<x<12,|2x|<1 \iff |x| < \frac{1}{2} \iff -\frac{1}{2}<x<\frac{1}{2},

by root test, the series converges absolutely for 12<x<12\displaystyle-\frac{1}{2}<x<\frac{1}{2} centered at x=0x=0.

x=12    n=2(2+1n)n(12)nan=(2+1n)n(12)nan1n=(2+1n)(12)x=-\frac{1}{2}\implies \sum_{n=2}^\infty \(2+\frac{1}{n}\)^n \(-\frac{1}{2}\)^n \\ a_n=\(2+\frac{1}{n}\)^n \(-\frac{1}{2}\)^n \\ |a_n|^\frac{1}{n} = \left| \(2+\frac{1}{n}\) \(-\frac{1}{2}\) \right|

Since an1n1|a_n|^\frac{1}{n}\to-1, by root test, the series converges at x=12\displaystyle x=-\frac{1}{2}.

x=12    n=2(2+1n)n(12)nlimn(2+1n)n(12)n=limn((2+1n)(12))n=limn(1+12n)n=limnenln(1+12n)=limnexpln(1+12n)1/n=explimn11+12n12n21n2=explimn11+12n12=exp12=e1.64872x=\frac{1}{2}\implies \sum_{n=2}^\infty \(2+\frac{1}{n}\)^n \(\frac{1}{2}\)^n \\ \begin{align*} \lim_{n\to\infty}\(2+\frac{1}{n}\)^n \(\frac{1}{2}\)^n &= \lim_{n\to\infty} \(\(2+\frac{1}{n}\) \(\frac{1}{2}\)\)^n \\ &= \lim_{n\to\infty} \(1+\frac{1}{2n}\)^n \\ &= \lim_{n\to\infty} e^{n\ln\(1+\frac{1}{2n}\) } \\ &= \lim_{n\to\infty} \exp\frac{\ln\(1+\frac{1}{2n}\) }{1/n} \\ &= \exp\lim_{n\to\infty} \frac{\frac{1}{1+\frac{1}{2n}}\cdot -\frac{1}{2n^2}}{-\frac{1}{n^2}} \\ &= \exp\lim_{n\to\infty} \frac{1}{1+\frac{1}{2n}}\cdot\frac{1}{2} \\ &= \exp\frac{1}{2} \\ &= \sqrt{e} \quad\approx 1.64872 \end{align*}

Since (2+1n)n(12)ne\displaystyle\(2+\frac{1}{n}\)^n \(\frac{1}{2}\)^n\to\sqrt{e}, by divergence test, the series diverges at x=12\displaystyle x=\frac{1}{2}.

As such:

3. Section 6.1

In the following exercises, given that 11x=n=0xn\displaystyle\frac{1}{1-x}=\sum_{n=0}^\infty x^n with convergence in (1,1)(−1,1), find the power series for each function with the given center a, and identify its interval of convergence.

(35) f(x)=x1x2;a=0f(x)=\frac{x}{1-x^2}; a=0

f(x)=x1x2=n=0x(x2)n,x2<1=n=0x2n+1,x<1\begin{align*} f(x) &= \frac{x}{1-x^2} \\ &= \sum_{n=0}^\infty x(x^2)^n,\quad |x^2|<1 \\ &= \sum_{n=0}^\infty x^{2n+1},\quad |x|<1 \end{align*}

Since
x<1    1<x<1,|x|<1\iff-1<x<1,

f(x)f(x) converges within 1<x<1-1<x<1.

Then,
f(1)=n=0(1)2n+1f(-1) = \sum_{n=0}^\infty(-1)^{2n+1}

Since limn(1)2n+1\displaystyle\lim_{n\to\infty} (-1)^{2n+1} does not exist, f(1)f(-1) diverges by divergence test.

f(1)=n=012n+1f(1) = \sum_{n=0}^\infty1^{2n+1} \\

Since limn12n+1=1\displaystyle\lim_{n\to\infty}1^{2n+1}=1, f(1)f(1) diverges by divergence test.

As such,
f(x)=x1x2=n=0x2n+1,x(1,1).f(x) =\frac{x}{1-x^2} =\sum_{n=0}^\infty x^{2n+1},\quad x\in(-1,1).

(37) f(x)=x21+x2;a=0f(x)=\frac{x^2}{1+x^2}; a=0

f(x)=x21+x2=x21(x2)=n=0x2(x2)n,x2<1=n=0(1)nx2n+2,x<1\begin{align*} f(x) &= \frac{x^2}{1+x^2} \\ &= \frac{x^2}{1-(-x^2)} \\ &= \sum_{n=0}^\infty x^2(-x^2)^n, \quad\left|-x^2\right|<1 \\ &= \sum_{n=0}^\infty(-1)^n x^{2n+2}, \quad|x|<1 \end{align*}

Since
x<1    1<x<1,|x|<1\iff-1<x<1,

f(x)f(x) converges within 1<x<1-1<x<1.

Then,
f(1)=n=0(1)n(1)2n+2=n=0(1)3n+2f(-1)=\sum_{n=0}^\infty(-1)^n (-1)^{2n+2} =\sum_{n=0}^\infty(-1)^{3n+2}

Since limn(1)3n+2\displaystyle\lim_{n\to\infty}(-1)^{3n+2} does not exist, f(1)f(-1) diverges by divergence test.

f(1)=n=0(1)n(1)2n+2=n=0(1)nf(1)=\sum_{n=0}^\infty(-1)^n (1)^{2n+2} =\sum_{n=0}^\infty(-1)^n

Since limn(1)n\displaystyle\lim_{n\to\infty}(-1)^n does not exist, f(1)f(1) diverges by divergence test.

As such,
f(x)=x21+x2=n=0(1)nx2n+2,x(1,1)f(x)=\frac{x^2}{1+x^2} =\sum_{n=0}^\infty(-1)^n x^{2n+2}, \quad x\in(-1,1)

(39) f(x)=112x;a=0f(x)=\frac{1}{1-2x}; a=0

f(x)=112x=n=0(2x)n,2x<1=n=02nxn,x<12\begin{align*} f(x) &= \frac{1}{1-2x} \\ &= \sum_{n=0}^\infty(2x)^n, \quad\left|2x\right|<1 \\ &= \sum_{n=0}^\infty2^n x^n, \quad|x|<\frac{1}{2} \end{align*}

Since
x<12    12<x<12,|x|<\frac{1}{2}\iff-\frac{1}{2}<x<\frac{1}{2},

f(x)f(x) converges within 12<x<12\displaystyle-\frac{1}{2}<x<\frac{1}{2}.

Then,
f(12)=n=02n(12)n=n=0(1)nf\(-\frac{1}{2}\) =\sum_{n=0}^\infty 2^n\(-\frac{1}{2}\)^n =\sum_{n=0}^\infty (-1)^n

Since limn(1)n\displaystyle\lim_{n\to\infty}(-1)^n does not exist, f(12)f\(-\frac{1}{2}\) diverges by divergence test.

f(12)=n=02n(12)n=n=01f\(\frac{1}{2}\) =\sum_{n=0}^\infty2^n\(\frac{1}{2}\)^n =\sum_{n=0}^\infty 1

Since limn1=1\displaystyle\lim_{n\to\infty}1=1, f(1)f(1) diverges by divergence test.

As such,
f(x)=112x=n=02nxn,x(12,12)f(x)=\frac{1}{1-2x}=\sum_{n=0}^\infty2^n x^n, \quad x\in\(-\frac{1}{2},\frac{1}{2}\)

(41) f(x)=x214x2;a=0f(x)=\frac{x^2}{1-4x^2}; a=0

f(x)=x214x2=n=0x2(4x2)n,4x2<1=n=0x24nx2n,x2<14=n=04nx2n+2,x<12\begin{align*} f(x) &= \frac{x^2}{1-4x^2} \\ &= \sum_{n=0}^\infty x^2(4x^2)^n,\quad |4x^2|<1 \\ &= \sum_{n=0}^\infty x^24^nx^{2n},\quad |x^2|<\frac{1}{4} \\ &= \sum_{n=0}^\infty 4^nx^{2n+2},\quad |x|<\frac{1}{2} \end{align*}

Since
x<12    12<x<12,|x|<\frac{1}{2}\iff-\frac{1}{2}<x<\frac{1}{2},

f(x)f(x) converges within 12<x<12\displaystyle-\frac{1}{2}<x<\frac{1}{2}.

Then,
f(12)=n=04n(12)2n+2.f\(-\frac{1}{2}\)=\sum_{n=0}^\infty 4^n \(-\frac{1}{2}\)^{2n+2}.

Since limn4n(12)2n+2\displaystyle\lim_{n\to\infty}4^n\(-\frac{1}{2}\)^{2n+2} does not exist, by divergence test f(12)\displaystyle f\(-\frac{1}{2}\) diverges.

f(12)=n=04n(12)2n+2f\(\frac{1}{2}\)=\sum_{n=0}^\infty 4^n \(\frac{1}{2}\)^{2n+2}

Since
limn4n(12)2n+2=limn4n22n+2=limn4n22n22=limn4n(22)n22=limn14=14\begin{align*} \lim_{n\to\infty}4^n\(\frac{1}{2}\)^{2n+2} &= \lim_{n\to\infty}\frac{4^n}{2^{2n+2}} \\ &= \lim_{n\to\infty}\frac{4^n}{2^{2n}\cdot2^2} \\ &= \lim_{n\to\infty}\frac{4^n}{(2^2)^n\cdot2^2} \\ &= \lim_{n\to\infty}\frac{1}{4} \\ &= \frac{1}{4} \end{align*}

by divergence test f(12)\displaystyle f\(\frac{1}{2}\) diverges.

As such,
f(x)=x214x2=n=04nx2n+2,x(12,12)f(x)=\frac{x^2}{1-4x^2} =\sum_{n=0}^\infty 4^nx^{2n+2}, \quad x\in\(-\frac{1}{2},\frac{1}{2}\)

4. Find

(i) The Taylor polynomial of degree 3 of f(x)=x2/3f(x)=x^{2/3} at x=8x=8

f(x)=x2/3    f(x)=23x1/3    f(x)=29x4/3    f(x)=827x7/3f(8)=82/3=4f(8)=2381/3=13f(8)=2984/3=172f(8)=82787/3=1432n=03f(n)(x)n!(x8)n=f(8)+f(8)(x8)+f(8)(x8)22!+f(8)(x8)33!=4+x83(x8)2722!+(x8)34323!=4+x83(x8)2144+(x8)32592\begin{align*} f(x)=x^{2/3} &\implies f'(x)=\frac{2}{3}x^{-1/3} \\ &\implies f''(x)=-\frac{2}{9}x^{-4/3} \\ &\implies f'''(x)=\frac{8}{27}x^{-7/3} \\ \end{align*} \\ \begin{darray}{cll} f(8) &= 8^{2/3} &= 4\\ f'(8) &= \frac{2}{3}\cdot 8^{-1/3} &= \frac{1}{3}\\ f''(8) &= -\frac{2}{9}\cdot 8^{-4/3} &= -\frac{1}{72}\\ f'''(8) &= \frac{8}{27}\cdot 8^{-7/3} &= \frac{1}{432}\\ \end{darray} \\ \begin{align*} \therefore\sum_{n=0}^3\frac{f^{(n)}(x)}{n!}(x-8)^n &= f(8) + f'(8)(x-8) +\frac{f''(8)(x-8)^2}{2!} +\frac{f''(8)(x-8)^3}{3!} \\ &= 4 +\frac{x-8}{3} -\frac{(x-8)^2}{72\cdot2!} +\frac{(x-8)^3}{432\cdot3!} \\ &= 4 +\frac{x-8}{3} -\frac{(x-8)^2}{144} +\frac{(x-8)^3}{2592} \end{align*}

(ii) The Taylor polynomial of degree 2 of f(x)=secxf(x)=\sec x at x=0x=0

f(x)=secx    f(x)=secxtanx    f(x)=(secxtan2x)+sec3xf(0)=sec0=1f(0)=sec0tan0=0f(0)=(sec0tan20)+sec30=1n=02f(n)(x)n!(x0)n=f(0)+f(0)x+f(0)x22!=1+0x+x22!=1+x22\begin{align*} f(x)=\sec x &\implies f'(x) = \sec x\tan x \\ &\implies f''(x) = (\sec x\tan^2 x) + \sec^3x \\ \end{align*} \\ \begin{darray}{cll} f(0) &= \sec 0 &= 1\\ f'(0) &= \sec 0\tan 0 &= 0\\ f''(0) &= (\sec 0\tan^2 0) + \sec^30 &= 1\\ \end{darray} \\ \begin{align*} \therefore\sum_{n=0}^2\frac{f^{(n)}(x)}{n!}(x-0)^n &= f(0) + f'(0)x +\frac{f''(0)x^2}{2!} \\ &= 1 + 0x + \frac{x^2}{2!} \\ &= 1 + \frac{x^2}{2} \end{align*}

5. Find the Taylor series expansion of the following functions using the formula 11x=n=0xn\frac{1}{1-x}=\sum_{n=0}^\infty x^n

Identify their interval of convergence. You may need to use differentiation and integration of the Taylor series.

Center of convergence not specified
The following answers for questions 5(i) through 5(iii) assumes that the center of convergence is at x=0x=0.

(i) 12+3x\frac{1}{2+3x}

Let the center of convergence be at x=0x=0.

12+3x=12(1+32x)=1211(32x)=n=012(32x)n,32x<1=n=0(3)n2(2)nxn,x<23=n=0(3)n2n+1xn,x<23\begin{align*} \frac{1}{2+3x} &= \frac{1}{2(1+\frac{3}{2}x)} \\ &= \frac{1}{2}\cdot\frac{1}{1-(-\frac{3}{2}x)} \\ &= \sum_{n=0}^\infty\frac{1}{2}\(-\frac{3}{2}x\)^n, \quad\left|-\frac{3}{2}x\right| < 1 \\ &= \sum_{n=0}^\infty \frac{(-3)^n}{2(2)^n} x^n,\quad|x|<\frac{2}{3} \\ &= \sum_{n=0}^\infty \frac{(-3)^n}{2^{n+1}} x^n,\quad|x|<\frac{2}{3} \end{align*}

Since
x<23    23<x<23,|x|<\frac{2}{3}\iff-\frac{2}{3}<x<\frac{2}{3},
the series converges within 23<x<23\displaystyle-\frac{2}{3}<x<\frac{2}{3}.

Then,
x=23    n=0(3)n2n+1(23)n=n=02n2n+1x=-\frac{2}{3} \implies\sum_{n=0}^\infty\frac{(-3)^n}{2^{n+1}} \(-\frac{2}{3}\)^n = \sum_{n=0}^\infty\frac{2^n}{2^{n+1}}

Since 2n2n+112\displaystyle\frac{2^n}{2^{n+1}}\to\frac{1}{2}, the series diverges by divergence test at x=23\displaystyle x=-\frac{2}{3}.

x=23    n=0(3)n2n+1(23)n=n=0(1)n2n2n+1x=\frac{2}{3} \implies\sum_{n=0}^\infty\frac{(-3)^n}{2^{n+1}} \(\frac{2}{3}\)^n = \sum_{n=0}^\infty(-1)^n\frac{2^n}{2^{n+1}}

Since 2n2n+112\displaystyle\frac{2^n}{2^{n+1}}\to\frac{1}{2}, the series diverges by divergence (and therefore the limit of the summand does not exist) test at x=23\displaystyle x=\frac{2}{3}.

As such, the interval of convergence for a series centered at x=0x=0 is (23,23)\displaystyle\(-\frac{2}{3},\frac{2}{3}\).

(ii) 1(12x)2\frac{1}{(1-2x)^2}

Let the center of convergence be at x=0x=0.

112x=n=0(2x)n,2x<1=n=02nxn,x<12\begin{align*} \frac{1}{1-2x} &= \sum_{n=0}^\infty(2x)^n, \quad|2x|<1 \\ &= \sum_{n=0}^\infty 2^n x^n, \quad|x|<\frac{1}{2} \\ \end{align*}

Since
 ⁣d ⁣dx(112x)=1(12x)2,\frac{\dd}{\dd x}\(\frac{1}{1-2x}\) = \frac{1}{(1-2x)^2},

then
1(12x)2=n=12n(2x)n1,x<12=n=12nnxn1,x<12.\begin{align*} \frac{1}{(1-2x)^2} &= \sum_{n=1}^\infty 2n(2x)^{n-1},\quad |x|<\frac{1}{2} \\ &= \sum_{n=1}^\infty 2^nn x^{n-1},\quad |x|<\frac{1}{2}. \end{align*}

And since
x<12    12<x<12,|x|<-\frac{1}{2}\iff-\frac{1}{2}<x<\frac{1}{2},

the series converges within 12<x<12\displaystyle-\frac{1}{2}<x<\frac{1}{2}.

Then,
x=12    n=1(1)n12nx=-\frac{1}{2}\implies \sum_{n=1}^\infty(-1)^{n-1}2n

Since 2n2n\to\infty, the series diverges by divergence test at x=12\displaystyle x=-\frac{1}{2}.

x=12    n=12nx=\frac{1}{2}\implies \sum_{n=1}^\infty 2n

Since 2n2n\to\infty, the series diverges by divergence test at x=12\displaystyle x=\frac{1}{2}.

As such, the interval of convergence for a series centered at x=0x=0 is (12,12)\displaystyle\(-\frac{1}{2},\frac{1}{2}\).

(iii) ln(1+x)\ln(1+x)

Let the center of convergence be at x=0x=0.

11+x=n=0(1)nxn,x<1\frac{1}{1+x} = \sum_{n=0}^\infty(-1)^n x^n,\quad |x|<1

Since
11+x ⁣dx=ln(1+x),\int\frac{1}{1+x}\dd x = \ln(1+x),

then
ln(1+x)=n=0(1)nxn+1n+1,x<1.\begin{align*} \ln(1+x) &= \sum_{n=0}^\infty\frac{(-1)^nx^{n+1}}{n+1}, \quad |x|<1. \end{align*}

And since
x<1    1<x<1,|x|<1\iff-1<x<1,

the series converges within 1<x<1-1<x<1.

Then,
x=1    n=0(1)2n+11n+1=n=01n+1x=-1\implies \sum_{n=0}^\infty(-1)^{2n+1}\frac{1}{n+1} =\sum_{n=0}^\infty -\frac{1}{n+1}

Since 1n+11n\displaystyle-\frac{1}{n+1}\approx-\frac{1}{n} for large values of nn, the series diverges at x=1x=-1 by pp-series test.

x=1    n=0(1)n1n+1x=1\implies \sum_{n=0}^\infty(-1)^n\frac{1}{n+1}

Since 1n+10\displaystyle\frac{1}{n+1}\to0, the series converge at x=1x=1 by alternating series test.

As such, the interval of convergence for a series centered at x=0x=0 is (1,1](-1,1].