% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2.2em}

Homework 11

Mos Kullathon
921425216

1(a) Find  ⁣dy ⁣dx\frac{\dd y}{\dd x} and  ⁣d2y ⁣dx2\frac{\dd^2y}{\dd x^2} for the following parametrized curve:

(i) x=sect,y=tantx=\sec t, y=\tan t

x=sect     ⁣dx ⁣dt=secttanty=tant     ⁣dy ⁣dt=sec2t ⁣dy ⁣dx=sec2tsecttant=secttant=1costcostsint=1sint=csct     ⁣d2y ⁣dx2= ⁣d ⁣dtcsctsecttant=costsin2tsecttant=cos2tsin2ttant=cot3tx = \sec t \implies \frac{\dd x}{\dd t} = \sec t\tan t \\ y = \tan t \implies \frac{\dd y}{\dd t} = \sec^2 t \\ \therefore\frac{\dd y}{\dd x} = \frac{\sec^2t}{\sec t\tan t} =\frac{\sec t}{\tan t} =\frac{1}{\cos t}\frac{\cos t}{\sin t} =\frac{1}{\sin t} =\csc t \\ \implies\frac{\dd^2y}{\dd x^2} =\frac{\frac{\dd}{\dd t}\csc t}{\sec t\tan t} =-\frac{\cos t}{\sin^2 t\sec t\tan t} =-\frac{\cos^2 t}{\sin^2 t\tan t} =-\cot^3 t

(ii) x=2t2,y=t4x=2t^2, y=t^4

x=2t2     ⁣dx ⁣dt=4ty=t4     ⁣dy ⁣dt=4t3 ⁣dy ⁣dx=4t34t=t2     ⁣d2y ⁣dx2= ⁣d ⁣dtt24t=2t4t=12x = 2t^2 \implies \frac{\dd x}{\dd t} = 4t \\ y = t^4 \implies \frac{\dd y}{\dd t} = 4t^3 \\ \therefore \frac{\dd y}{\dd x} = \frac{4t^3}{4t} = t^2 \\ \implies\frac{\dd^2 y}{\dd x^2} =\frac{\frac{\dd}{\dd t}t^2}{4t} =\frac{2t}{4t} = \frac{1}{2}

(b) For (i) above, find the equation of the tangent line at π4\frac{\pi }{4}

t=π4     ⁣dy ⁣dx=cscπ4=2    x=secπ4=2    y=tanπ4=1\begin{align*} t=\frac{\pi}{4} &\implies \frac{\dd y}{\dd x} = \csc\frac{\pi}{4} = \sqrt{2} \\ &\implies x=\sec\frac{\pi}{4} = \sqrt{2}\\ &\implies y= \tan\frac{\pi}{4} = 1 \end{align*}

Then, the equation of the tangent line to the curve at t=π4\displaystyle t=\frac{\pi}{4} is
y1=2(x2)y=2x1.y-1 = \sqrt{2}(x-\sqrt{2}) \\ y = \sqrt{2}x - 1.

2. Find the arc length of the curve x=t3,y=3t22x=t^3, y=\frac{3t^2}{2} when 0t30\le t\le\sqrt{3}.

x=t3     ⁣dx ⁣dt=3t2y=3t22     ⁣dy ⁣dt=3tx=t^3 \implies \frac{\dd x}{\dd t} = 3t^2 \\ y = \frac{3t^2}{2} \implies \frac{\dd y}{\dd t} = 3t

The arc length LL of the curve for 0t30\le t\le\sqrt{3} is
L=03(3t2)2+(3t)2 ⁣dt=039t4+9t2 ⁣dt=039t2(t2+1) ⁣dt=303tt2+1 ⁣dtu=t2+1     ⁣du=2t ⁣dt     ⁣dt= ⁣du2tt=0    u=02+1=1t=3    u=32+1=4L=303tt2+1 ⁣dt=314tu ⁣du2t=3214u ⁣du=32[2u3/23]14=32(16323)=142=7.\begin{align*} L &= \int_0^{\sqrt{3}}\sqrt{(3t^2)^2+(3t)^2} \dd t \\ &= \int_0^{\sqrt{3}}\sqrt{9t^4+9t^2} \dd t \\ &= \int_0^{\sqrt{3}}\sqrt{9t^2(t^2+1)} \dd t \\ &= 3\int_0^{\sqrt{3}}t\sqrt{t^2+1}\dd t \end{align*} \\ \begin{darray}{cc} u = t^2+1 &\implies& \dd u = 2t\dd t \\ &\iff& \dd t = \frac{\dd u}{2t} \\ t = 0 &\implies& u = 0^2+1=1 \\ t = \sqrt{3} &\implies& u = \sqrt{3}^2 + 1 = 4 \end{darray} \\ \begin{align*} \therefore L = 3\int_0^{\sqrt{3}}t\sqrt{t^2+1}\dd t &= 3\int_1^4 t\sqrt{u} \frac{\dd u}{2t} \\ &= \frac{3}{2}\int_1^4 \sqrt{u}\dd u \\ &= \frac{3}{2} \[\frac{2u^{3/2}}{3}\]_1^4 \\ &= \frac{3}{2} \(\frac{16}{3}-\frac{2}{3}\) \\ &= \frac{14}{2} \\ &= 7. \end{align*}

3(a) Use Desmos to draw the graph x(t)=cost,y(t)=sin3tx(t)=\cos t, y(t)=\sin^3t for πtπ-\pi\le t\le\pi.

x(t)=cos t, y(t)=sin(3t)$ on −π≤t≤π

(b) Find the area of the bounded region.

x(t)=cost    x(t)=sinty(t)=sin3t    y(t)=3sin2tcost\begin{darray}{cc} x(t) = \cos t&\implies& x'(t)=-\sin t \\ y(t)=\sin^3 t &\implies& y'(t)=3\sin^2 t\cos t \end{darray}

For t[π,π]t\in[-\pi,\pi], we have that:
y(t)=sin3t=1    t=π2y(t)=sin3t=1    t=π2.y(t)=\sin^3t=-1 \implies t=-\frac{\pi}{2} \\ y(t)=\sin^3t = 1\implies t=\frac{\pi}{2}.

The graph for the curve x(t)=cost,y(t)=sin3tx(t)=\cos t, y(t)=\sin^3t over π2tπ2\displaystyle-\frac{\pi}{2}\le t\le\frac{\pi}{2} is as follows:

Integrating with respect to yy from π2\displaystyle-\frac{\pi}{2} to π2\displaystyle\frac{\pi}{2} yields the area of the right-hand side of the curve.

π2π2x ⁣dy=π2π2x(t)y(t) ⁣dt=π2π2cost(3sin2tcost) ⁣dt=3π8\begin{align*} \int_{-\frac{\pi}{2}}^\frac{\pi}{2} x \dd y &= \int_{-\frac{\pi}{2}}^\frac{\pi}{2} x(t)y'(t)\dd t \\ &= \int_{-\frac{\pi}{2}}^\frac{\pi}{2} \cos t (3\sin^2 t\cos t) \dd t \\ &= \frac{3\pi}{8} \end{align*} \\

Since the curve is symmetrical about the y-axis, the total area bounded by the curve AA is double the resulting area.

A=23π8=3π4A=2\cdot\frac{3\pi}{8}=\frac{3\pi}{4}

(c) Find the volume of solid of revolution by revloving the curve along the y-axis.

V=ππ2π2x2 ⁣dy=ππ2π2x(t)2y(t) ⁣dt=ππ2π2cos2t(3sin2tcost) ⁣dt=4π5\begin{align*} V=\pi\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2\dd y &= \pi\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x(t)^2y'(t)\dd t \\ &= \pi\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2t(3\sin^2 t\cos t)\dd t \\ &= \frac{4\pi}{5} \end{align*}

(d) Write down the arc length integral of this curve from t=0t=0 to t=π/2t=\pi/2.

L=0π2x(t)2+y(t)2 ⁣dt=0π2sin2t+9sin4tcos2t ⁣dt=0π2sin2t(1+9sin2tcos2t) ⁣dt\begin{align*} L &= \int_0^\frac{\pi}{2} \sqrt{x'(t)^2+y'(t)^2}\dd t \\ &= \int_0^\frac{\pi}{2} \sqrt{\sin^2 t + 9\sin^4 t\cos^2 t} \dd t \\ &= \int_0^\frac{\pi}{2} \sqrt{\sin^2t(1+9\sin^2t\cos^2t)}\dd t \end{align*}

4. Convert the following points into polar coordinates:

(a) (4,4)(-4,4)

Point is in second quadrant.

r=(4)2+42=42θ=π+tan1(1)=3π4(r,θ)=(42,3π4)r = \sqrt{(-4)^2+4^2} = 4\sqrt{2} \\ \theta = \pi + \tan^{-1}(-1) = \frac{3\pi}{4} \\ \therefore (r,\theta) = \(4\sqrt{2}, \frac{3\pi}{4}\)

(b) (3,33)(3,3\sqrt{3})

Point is in first quadrant.

r=32+3232=6θ=tan1(333)=tan13=π3(r,θ)=(6,π3)r=\sqrt{3^2+3^2\sqrt{3}^2} = 6 \\ \theta = \tan^{-1}\(\frac{3\sqrt{3}}{3}\) = \tan^{-1}\sqrt{3} = \frac{\pi}{3} \\ \therefore (r, \theta) = \(6, \frac{\pi}{3}\)

(c) (3,1)(\sqrt{3}, -1)

Point is in fourth quadrant.

r=32+(1)2=2θ=tan1(13)=π6(r,θ)=(2,π6)r = \sqrt{\sqrt{3}^2 + (-1)^2} = 2 \\ \theta = \tan^{-1}\(\frac{-1}{\sqrt{3}}\) = -\frac{\pi}{6} \\ \therefore (r,\theta) = \(2, -\frac{\pi}{6}\)

(d) (6,0)(-6,0)

Point is on the x-axis.

r=(6)2+02=6θ=π(r,θ)=(6,π)r = \sqrt{(-6)^2+0^2} = 6 \\ \theta =\pi \\ \therefore (r,\theta) = (6,\pi)

5. Consider the polar equation r=2+cos(2θ)r=2+\cos(2\theta).

(a) Use Desmos to sketch the picture.

r=2+cos(2θ)

(b) Find the slope of the tangent line at θ=π/4\theta=\pi/4.

For r=f(θ)r=f(\theta) where f(θ)=2+cos(2θ)f(\theta)=2+\cos(2\theta).

x(θ)=f(θ)cosθ=(2+cos(2θ))cosθ=2cosθ+cos(2θ)cosθy(θ)=f(θ)sinθ=(2+cos(2θ))sinθ=2sinθ+sinθcos(2θ).\begin{align*} x(\theta) &= f(\theta)\cos\theta \\ &= (2+\cos(2\theta))\cos\theta \\ &= 2\cos\theta+\cos(2\theta)\cos\theta \\ y(\theta) &= f(\theta)\sin\theta \\ &= (2+\cos(2\theta))\sin\theta \\ &= 2\sin\theta + \sin\theta\cos(2\theta). \end{align*}

Then,
x(θ)=2sinθ2sin(2θ)cosθcos(2θ)sinθy(θ)=2cosθ+cosθcos(2θ)2sinθsin(2θ).x'(\theta) = -2\sin\theta-2\sin(2\theta)\cos\theta-\cos(2\theta)\sin\theta \\ y'(\theta) = 2\cos\theta+\cos\theta\cos(2\theta)-2\sin\theta\sin(2\theta).

As such, the slope of the tangent line at θ=π4\displaystyle\theta=\frac{\pi}{4} is
 ⁣dy ⁣dx=y(π4)x(π4)=2cosπ4+cosπ4cos(2π4)2sinπ4sin(2π4)2sinπ42sin(2π4)cosπ4cos(2π4)sinπ4=022=0.\frac{\dd y}{\dd x} = \frac{y'(\frac{\pi}{4})}{x'(\frac{\pi}{4})} =\frac {2\cos\frac{\pi}{4}+\cos\frac{\pi}{4}\cos(2\frac{\pi}{4})-2\sin\frac{\pi}{4}\sin(2\frac{\pi}{4})}{-2\sin\frac{\pi}{4}-2\sin(2\frac{\pi}{4})\cos\frac{\pi}{4}-\cos(2\frac{\pi}{4})\sin\frac{\pi}{4}} =\frac{0}{-2\sqrt{2}} =0.

(c) Find the area of the bounded region of the graph.

A=1202π(2+cos(2θ))2 ⁣dθ=1202π4+cos2(2θ)+4cos(2θ) ⁣dθu=2θ     ⁣du=2 ⁣dθ     ⁣dθ=12 ⁣duθ=0    u=2(0)=0θ=2π    u=2(2π)=4π1202π4+cos2(2θ)+4cos(2θ) ⁣dθ=1404π4+cos2(u)+4cosu ⁣du=1404π4+12cos(2u)+12+4cosu ⁣du=1804π8+cos(2u)+1+8cosu ⁣du=18[9u+sin(2u)2+8sinu]04π=18(36π)=9π2\begin{align*} A &= \frac{1}{2}\int_0^{2\pi}(2+\cos(2\theta))^2\dd\theta \\ &= \frac{1}{2}\int_0^{2\pi} 4 + \cos^2(2\theta)+4\cos(2\theta) \dd\theta \end{align*} \\ \begin{darray}{cc} u = 2\theta &\implies& \dd u =2\dd\theta \\ &\iff& \dd\theta = \frac{1}{2}\dd u \\ \theta = 0 &\implies& u=2(0)=0 \\ \theta = 2\pi &\implies& u = 2(2\pi) = 4\pi \end{darray} \\ \begin{align*} \frac{1}{2}\int_0^{2\pi} 4 + \cos^2(2\theta)+4\cos(2\theta) \dd\theta &= \frac{1}{4}\int_0^{4\pi} 4+\cos^2(u)+4\cos u\dd u \\ &= \frac{1}{4}\int_0^{4\pi} 4+\frac{1}{2}\cos(2u)+\frac{1}{2}+4\cos u\dd u \\ &= \frac{1}{8}\int_0^{4\pi} 8+\cos(2u)+1+8\cos u\dd u \\ &=\frac{1}{8}\[9u +\frac{\sin(2u)}{2}+8\sin u\]_0^{4\pi} \\ &= \frac{1}{8}(36\pi) \\ &= \frac{9\pi}{2} \end{align*}

6. Consider the polar equation r=θ2r=\theta^2.

(a) Use Desmos to sketch the picture for 0θ4π0\le\theta\le4\pi.

r=θ^2 on 0≤θ≤4π

(b) Find the slope of the tangent line at θ=3π/4\theta=3\pi/4.

For r=f(θ)r=f(\theta) where f(θ)=θ2f(\theta)=\theta^2,

x(θ)=f(θ)cosθ=θ2cosθy(θ)=f(θ)sinθ=θ2sinθ.x(\theta) = f(\theta)\cos\theta = \theta^2\cos\theta \\ y(\theta) = f(\theta)\sin\theta = \theta^2\sin\theta.

Then,
x(θ)=2θcosθθ2sinθy(θ)=2θsinθ+θ2cosθ.x'(\theta) = 2\theta\cos\theta-\theta^2\sin\theta \\ y'(\theta) = 2\theta\sin\theta+\theta^2\cos\theta.

As such, the slope of the tangent line at θ=3π4\displaystyle\theta=\frac{3\pi}{4} is
 ⁣dy ⁣dx=y(3π4)x(3π4)=2(3π4)sin(3π4)+(3π4)2cos(3π4)2(3π4)cos(3π4)(3π4)2sin(3π4)=1168+3π.\frac{\dd y}{\dd x} = \frac{y'(\frac{3\pi}{4})}{x'(\frac{3\pi}{4})} = \frac{2(\frac{3\pi}{4})\sin(\frac{3\pi}{4})+(\frac{3\pi}{4})^2\cos(\frac{3\pi}{4})} {2(\frac{3\pi}{4})\cos(\frac{3\pi}{4})-(\frac{3\pi}{4})^2\sin(\frac{3\pi}{4})} = 1-\frac{16}{8+3\pi}.

(c) Find the arc length of the curve for 0θ4π0\le\theta\le4\pi.

L=04πx(θ)2+y(θ)2 ⁣dθ=04π(2θcosθθ2sinθ)2+(2θsinθ+θ2cosθ)2 ⁣dθ=04πθ2(θ2+4) ⁣dθ=04πθθ2+4 ⁣dθu=θ2+4     ⁣du=2θ ⁣dθ     ⁣dθ= ⁣du2θθ=0    u=02+4=4θ=4π    u=(4π)2+4=4+16π2L=04πθθ2+4 ⁣dθ=44+16π2θu ⁣du2θ=1244+16π2u ⁣du=12[2u3/23]44+16π2=83((14π2)3/21)\begin{align*} L &= \int_0^{4\pi} \sqrt{x'(\theta)^2+y'(\theta)^2} \dd\theta \\ &= \int_0^{4\pi} \sqrt{(2\theta\cos\theta-\theta^2\sin\theta)^2+(2\theta\sin\theta+\theta^2\cos\theta)^2} \dd\theta \\ &= \int_0^{4\pi} \sqrt{\theta^2(\theta^2+4)}\dd\theta \\ &= \int_0^{4\pi}\theta\sqrt{\theta^2+4}\dd\theta \end{align*} \\ \begin{darray}{ccl} u = \theta^2+4 &\implies& \dd u =2\theta\dd\theta \\ &\iff& \dd\theta = \frac{\dd u}{2\theta} \\ \theta = 0 &\implies& u=0^2+4=4 \\ \theta = 4\pi &\implies& u = (4\pi)^2+4=4+16\pi^2 \end{darray} \\ \begin{align*} \therefore L= \int_0^{4\pi}\theta\sqrt{\theta^2+4}\dd\theta &= \int_4^{4+16\pi^2}\theta\sqrt{u}\frac{\dd u}{2\theta} \\ &= \frac{1}{2}\int_4^{4+16\pi^2}\sqrt{u}\dd u \\ &= \frac{1}{2}\[\frac{2u^{3/2}}{3}\]_4^{4+16\pi^2} \\ &= \frac{8}{3}((1-4\pi^2)^{3/2}-1) \end{align*}