Homework 3

% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2em}

Mos Kullathon
921425216

1. Find the area of the bounded region enclosed by y=x2,x+y=2y = x^2 , x + y = 2.

y=x2    f(x)=x2x+y=2    g(x)=2x\begin{darray}{c} y = x^2 &\implies& f(x) = x^2 \\ x + y = 2 &\implies& g(x) = 2-x \end{darray}

Finding intersections of ff and gg.
x2=2xx2+x2=0(x1)(x+2)=0x=2,1x^2 = 2 - x \\ x^2 + x - 2 = 0 \\ (x-1)(x+2) = 0 \\ \therefore x = -2, 1

Since g(x)f(x)g(x) \ge f(x) for x[2,1]x \in [-2, 1], the area between the curves is:
12g(x)f(x) ⁣dx=12(2xx2) ⁣dx=[2xx22x33]12=92.\begin{align*} \int_1^{-2} g(x)-f(x) \dd x &= \int_1^{-2} (2-x-x^2) \dd x \\ &= \bigg[2x - \frac{x^2}{2} - \frac{x^3}{3}\bigg]_1^{-2} \\ &= \frac{9}{2}. \end{align*}

2. Find the area of the region enclosed by y=tanxy=\tan x and the x-axis over the interval [π/3,π/4][-\pi/3, \pi/4].

Since tanx0\tan x \le 0 for x=2πn+πx = 2\pi n + \pi where nZn \in \Z, we find that for values of x[π3,π4]x\in [-\frac{\pi}{3}, \frac{\pi}{4}]:

tanx0,x[π3,0]tanx0,x[0,π4]\tan x \le 0, \qquad x \in \[-\frac{\pi}{3}, 0\] \\ \tan x \ge 0, \qquad x\in \[0, \frac{\pi}{4}\]

As such, the total area of y=tanxy=\tan x bounded by the x-axis over [π3,π4][-\frac{\pi}{3}, \frac{\pi}{4}] is:

π/30tanx ⁣dx+0π/4tanx ⁣dx=[lncosx]π/30+[lncosx]0π/4=3ln22.\begin{align*} &-\int_{-\pi/3}^0 \tan x \dd x + \int_0^{\pi/4} \tan x \dd x \\ &= - \bigg[-\ln\cos x\bigg]_{-\pi/3}^0 + \bigg[-\ln\cos x\bigg]_0^{\pi/4} \\ &= \frac{3\ln 2}{2}. \end{align*}

3. Find the area of the shaded region.

x=(y1)2    y=x1x=3y    y=3xx=2y    y=14x2\begin{darray}{c} x = (y-1)^2 &\implies& y = \sqrt x - 1 \\ x = 3 - y &\implies& y = 3 - x \\ x = 2\sqrt{y} &\implies& y = \frac{1}{4}x^2 \end{darray}

x114x2\sqrt{x}-1 \ge \frac{1}{4}x^2 for x[0,1]x\in[0, 1]. As such the area from x=0x=0 to x=1x=1 is:

01(x+114x2) ⁣dx.\int_0^1 (\sqrt{x}+1-\frac{1}{4}x^2) \dd x.

3x14x23-x \ge \frac{1}{4}x^2 for x[1,2]x\in[1, 2]. As such the area from x=1x=1 to x=2x=2 is:

12(3x14x2) ⁣dx.\int_1^2 (3-x-\frac{1}{4}x^2)\dd x.

Therefore, the area AA between the three functions from x=0x=0 to x=1x=1 is the sum of the two integrals.

A=01(x+114x2) ⁣dx+12(3x14x2) ⁣dx=[2x3/23+xx312]01+[3xx22x212]12=1912+1032912=52\begin{align*} A &= \int_0^1 (\sqrt{x}+1-\frac{1}{4}x^2) \dd x + \int_1^2 (3-x-\frac{1}{4}x^2)\dd x \\ &= \bigg[\frac{2x^{3/2}}{3}+x-\frac{x^3}{12}\bigg]_0^1 + \bigg[3x-\frac{x^2}{2}-\frac{x^2}{12}\bigg]_1^2 \\ &= \frac{19}{12} + \frac{10}{3} - \frac{29}{12} \\ &= \frac{5}{2} \end{align*} \\

4. Book Section 2.1

(2) Area between y=x2y=x^2 and y=3x+4y=3x+4.

x2=3x+4x23x4=0(x4)(x+1)=0x=1,4x^2 = 3x + 4 \\ x^2 - 3x - 4 = 0 \\ (x-4)(x+1) = 0 \\ \therefore x = -1, 4

y=x2y=x^2 and y=3x+4y=3x+4 intersects at x=1x = -1 and x=4x = 4, and 3x+4x23x+4 \ge x^2 for all x[1,4]x\in[-1, 4]. Therefore,

A=143x+4x2 ⁣dx=[3x22+4xx33]14=1256.\begin{align*} A &= \int_{-1}^4 3x+4-x^2 \dd x \\ &= \[\frac{3x^2}{2}+4x-\frac{x^3}{3}\]_{-1}^4 \\ &= \frac{125}{6}. \end{align*}

(3) Area between y=x3y=x^3 and y=x2+xy=x^2+x.

x3=x2+xx3x2x=0x=12±52x^3 = x^2 + x \\ x^3 - x^2 - x = 0 \\ \therefore x = \frac{1}{2}\pm\frac{\sqrt{5}}{2}

y=x3y=x^3 and y=x2+xy=x^2+x intersects at x=152x = \frac{1-\sqrt{5}}{2} and x=1+52x=\frac{1+\sqrt{5}}{2}.

0x3x2+x0 \ge x^3 \ge x^2 + x for all x[152,0]x\in[\frac{1-\sqrt{5}}{2},0] and x2+xx30x^2 + x \ge x^3 \ge 0 for all x[0,1+52]x\in[0,\frac{1+\sqrt{5}}{2}]. Therefore,

A=1520(x3x2x) ⁣dx+01+52(x2+xx3) ⁣dx=[x44x33x22]1520+[x33+x22x44]01+52=1312.\begin{align*} A &= \int_\frac{1-\sqrt{5}}{2}^0 (x^3 - x^2 - x) \dd x + \int_0^{\frac{1+\sqrt{5}}{2}} (x^2 + x - x^3) \dd x \\ &= \[\frac{x^4}{4} - \frac{x^3}{3} - \frac{x^2}{2}\]_\frac{1-\sqrt{5}}{2}^0 + \[\frac{x^3}{3} + \frac{x^2}{2} - \frac{x^4}{4}\]_0^{\frac{1+\sqrt{5}}{2}} \\ &= \frac{13}{12}. \end{align*}

(12) Area between y=ey=e, y=exy=e^x, and y=exy=e^{-x}.

e=ex    x=1e=ex    x=1x=±1e = e^x \implies x = 1 \\ e = e^{-x} \implies x = -1 \\ \therefore x = \pm1

e=exe = e^x at x=1x = 1 and e=ex\\e = e^{-x} at x=1x = -1

A=10eex ⁣dx+01eex ⁣dx=[ex+ex]10+[exex]01=2\begin{align*} \displaystyle\therefore A &= \int_{-1}^0e-e^{-x}\dd x + \int_0^1 e-e^x\dd x \\ &= \bigg[ex+e^{-x}\bigg]_{-1}^0 + \bigg[ex - e^x\bigg]_0^1 \\ &= 2 \end{align*}

(22) Area between x=3+y2x=-3+y^2 and x=yy2x=y-y^2.

3+y2=yy22y2y3=0y=1,32-3+y^2 = y - y^2 \\ 2y^2-y-3 = 0 \\ \therefore y=-1,\frac{3}{2}

3+y2=yy2-3+y^2 = y - y^2\\ at y=1y=-1 and y=32\displaystyle y=\frac{3}{2}

A=13/2yy2(3+y2) ⁣dy=13/22y2+y+3 ⁣dy=[2y33+y22+3y]13/2=12524\begin{align*} \therefore A &= \int_{-1}^{3/2} y-y^2-(-3+y^2) \dd y \\ &= \int_{-1}^{3/2}-2y^2+y+3 \dd y \\ &= \bigg[-\frac{2y^3}{3} + \frac{y^2}{2} + 3y \bigg]_{-1}^{3/2} \\ &= \frac{125}{24} \end{align*}

(53) Area between y2=xy^2 = x and x=y+2x=y+2.

y2=y+2y2y2=0(y+1)(y2)=0y=1,2y^2 = y + 2 \\ y^2 - y - 2 = 0 \\ (y+1)(y-2) = 0 \\ \therefore y=-1,2

y2=y+2y^2=y+2\\ at y=1\displaystyle y=-1 and y=2y=2

A=12y+2y2 ⁣dy=[y22+2yy33]12=92\begin{align*} \therefore A &= \int_{-1}^2 y+2-y^2 \dd y \\ &= \bigg[\frac{y^2}{2}+2y-\frac{y^3}{3}\bigg]_{-1}^2 \\ &= \frac{9}{2} \end{align*}