Homework 4

% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2.2em}

Mos Kullathon
921425216

1. In lecture, we found the volume of a donut by revolving the cricles (x(Rr))2+y2=r2(x-(R-r))^2 + y^2 = r^2 along the yy-axis where R>rR>r.

(a) Derive the integral formula for the volume of the donut. (It was covered in lass, but please rewrite it on your own)

First, we solve for xx to get an expression in terms of yy.

(x(Rr))2+y2=r2(x(Rr))2=r2y2x(Rr)=±r2y2x=(Rr)±r2y2(x-(R-r))^2 + y^2 = r^2 \\ (x-(R-r))^2 = r^2 - y^2 \\ x - (R-r) = \pm\sqrt{r^2-y^2} \\ x = (R-r) \pm\sqrt{r^2-y^2}

We can then split the expression for xx to produce two semicicles, where the positive square root component will produce the right side of the circle, and the negative component for the left side.

fL(y)=(Rr)r2y2fR(y)=(Rr)+r2y2f_L(y) = (R-r) -\sqrt{r^2-y^2} \\ f_R(y) = (R-r) +\sqrt{r^2-y^2}

Revolving the right-hand component (fR(y)f_R(y)) around the x-axis would give us the outside shape of the donut. Similarly, revolving the left-hand component (fL(y)f_L(y)) around the x-axis would produce the inside portion (the hole) of the donut.

As such, the volume of the donut VV would be the volume produced by revolving the outside minus the inside.

V=πrrfR(y)2fL(y)2 ⁣dy=πrr((Rr)+r2y2)2((Rr)r2y2)2 ⁣dy\begin{align*} V &= \pi\int_{-r}^r f_R(y)^2 - f_L(y)^2 \dd y \\ &= \pi\int_{-r}^r\((R-r) + \sqrt{r^2-y^2}\)^2 - \((R-r) -\sqrt{r^2-y^2}\)^2 \dd y \end{align*}

Let A=RrA = R-r and B=r2y2B = \sqrt{r^2-y^2}. Then,
((Rr)+r2y2)2((Rr)r2y2)2=(A+B)2(AB)2=(A2+B2+2AB)(A2+B22AB)=2AB(2AB)=4AB=4(Rr)r2y2.\begin{align*} &\((R-r) + \sqrt{r^2-y^2}\)^2 - \((R-r) -\sqrt{r^2-y^2}\)^2 \\ &= (A+B)^2 - (A-B)^2 \\ &= (\cancel{A^2+B^2}+2AB) - (\cancel{A^2+B^2}-2AB) \\ &= 2AB - (-2AB) \\ &= 4AB \\ &= 4(R-r)\sqrt{r^2-y^2}. \end{align*}

And so, we have that:

V=πrr((Rr)+r2y2)2((Rr)r2y2)2 ⁣dy=πrr4(Rr)r2y2 ⁣dy=4π(Rr)rrr2y2 ⁣dy.\begin{align*} V &= \pi\int_{-r}^r\((R-r) + \sqrt{r^2-y^2}\)^2 - \((R-r) -\sqrt{r^2-y^2}\)^2 \dd y \\ &= \pi\int_{-r}^r 4(R-r)\sqrt{r^2-y^2} \dd y \\ &= 4\pi(R-r) \int_{-r}^r\sqrt{r^2-y^2}\dd y. \end{align*}

(b) Compute the integral and find the volume of the donut. (Substitute y=rsinθy = r\sin\theta)

With the integrand being in form r2y2\sqrt{r^2-y^2}, we can use trigonometic substitution.

Let y=rsinθy = r\sin\theta.

y=rsinθ     ⁣dy=rcosθ ⁣dθy=rsinθ=r    θ=sin1(1)=π2y=rsinθ=r    θ=sin1(1)=π2rrr2y2 ⁣dy=π/2π/2r2r2sin2θrcosθ ⁣dθ=π/2π/2r2(1sin2θ)rcosθ ⁣dθ=π/2π/2r2cos2θrcosθ ⁣dθ=π/2π/2rcosθrcosθ ⁣dθ=π/2π/2r2cos2θ ⁣dθ=r2π/2π/2cos2θ ⁣dθ=r2π/2π/21+cos2θ2 ⁣dθ=r22π/2π/21+cos2θ ⁣dθ=r22[θ+sin2θ2]π/2π/2=r22(π2+sinπ2+π2sin(π)2)=πr22\begin{darray}{cc} y = r\sin\theta &\implies& \dd y = r\cos\theta\dd\theta \\ y = r\sin\theta = -r &\implies& \theta = \sin^{-1}(-1) = -\frac{\pi}{2} \\ y = r\sin\theta = r &\implies& \theta = \sin^{-1}(1) = \frac{\pi}{2} \end{darray} \\ \begin{align*} \therefore \int_{-r}^r \sqrt{r^2-y^2}\dd y &= \int_{-\pi/2}^{\pi/2} \sqrt{r^2-r^2\sin^2\theta}\cdot r\cos\theta\dd\theta \\ &= \int_{-\pi/2}^{\pi/2} \sqrt{r^2(1-\sin^2\theta)}\cdot r\cos\theta\dd\theta \\ &= \int_{-\pi/2}^{\pi/2} \sqrt{r^2\cos^2\theta}\cdot r\cos\theta\dd\theta \\ &= \int_{-\pi/2}^{\pi/2} r\cos\theta\cdot r\cos\theta\dd\theta \\ &= \int_{-\pi/2}^{\pi/2} r^2\cos^2\theta \dd\theta \\ &= r^2\int_{-\pi/2}^{\pi/2} \cos^2\theta\dd\theta \\ &= r^2\int_{-\pi/2}^{\pi/2} \frac{1+\cos2\theta}{2}\dd\theta \\ &= \frac{r^2}{2}\int_{-\pi/2}^{\pi/2} 1+\cos2\theta\dd\theta \\ &= \frac{r^2}{2}\[\theta+\frac{\sin2\theta}{2}\]_{-\pi/2}^{\pi/2} \\ &= \frac{r^2}{2}\(\frac{\pi}{2}+\cancel{\frac{\sin\pi}{2}} + \frac{\pi}{2}-\cancel{\frac{\sin(-\pi)}{2}}\) \\ &= \frac{\pi r^2}{2} \end{align*}

Finally, we substitute the result of this integral into our expression for volume.

V=4π(Rr)rrr2y2 ⁣dy=4π(Rr)πr22=2π2r2(Rr)\begin{align*} V &= 4\pi(R-r)\int_{-r}^r\sqrt{r^2-y^2}\dd y \\ &= 4\pi(R-r)\frac{\pi r^2}{2} \\ &= 2\pi^2r^2(R-r) \end{align*}

2. Find the volume of the solid of revolution by rotating the region bounded by y=2x2,y=8y = 2x^2, y = 8 and the yy-axis.

Question open to interpretation
Axis of revolution not specified. Assuming revolution around the y-axis.

y=2x2    x=±y2y = 2x^2 \implies x = \pm\sqrt{\frac{y}{2}}

Since the region is bounded by the y-axis, we only consider the positive component.
x=y2x = \sqrt{\frac{y}{2}}

And at x=0x=0, y=0y=0. So, the integral for the volume VV is
V=π08(y2)2 ⁣dy=π08y2 ⁣dy=π[y24]08=16π.\begin{align*} V &= \pi\int_0^8 \(\sqrt{\frac{y}{2}}\)^2\dd y \\ &= \pi \int_0^8 \frac{y}{2}\dd y \\ &= \pi \[\frac{y^2}{4}\]_0^8 \\ &= 16\pi. \end{align*}

Long Question 1

In Figure 1, the region RR is enclosed by the parabola y=4(x3)2y = 4 − (x − 3)^2 and the line segment ACAC where A,CA, C are the points (1,0)(1, 0) and (5,0)(5, 0) respectively. BB is the vertec ofthe parabola.

(a) (i) Write down the coordinates of BB.

y=4(x3)2     ⁣dy ⁣dx=2(x3)2(x3)=0    x=3x=3    y=4(33)2=4B=(3,4)\begin{darray}{cc} y = 4 - (x-3)^2 &\implies& \frac{\dd y}{\dd x} = -2(x - 3) \\ -2(x - 3) = 0 &\implies& x = 3 \\ x = 3 &\implies& y = 4-(3-3)^2 = 4 \end{darray} \\ \therefore B = (3, 4)

(ii) Write down the equation of the curve ABAB and BCBC as a function of x=f(y)x = f(y).

y=4(x3)2y4=(x3)2y+4=(x3)2±y+4=x3x=3±y+4fAB(y)=34yfBC(y)=3+4yy = 4-(x-3)^2 \\ y-4 = -(x-3)^2 \\ -y+4 = (x-3)^2 \\ \pm\sqrt{-y+4} = x - 3 \\ x = 3\pm\sqrt{-y+4} \\ \begin{align*} \therefore f_{AB}(y) &= 3 - \sqrt{4-y} \\ f_{BC}(y) &= 3 + \sqrt{4-y} \end{align*}

A jelly ring in the shape of solid of revolution of the region RR is revolved the yy-axis as shown in Figure 2. The jelly ring contains two layers and we let hh be the height of the lower layer.

(b) (i) Show that the volume of the lower layer of the jelly ring is 8π(8(4h)3/2)8\pi(8-(4-h)^{3/2})

Similar to question one, revolving the right-hand side (fBC(y)f_{BC}(y)) will produce the volume of the entire jelly. Revolving the left-hand side (fAB(y)f_{AB}(y)) will produce the volume of the hole.

As such, the volume of the lower portion of the jelly ring VlowerV_\text{lower} would be the volume produced by revolving the outside minus the inside from 00 to height hh.

Vlower=π0hfBC(y)2fAB(y)2 ⁣dy=π0h(3+4y)2(34y)2 ⁣dy\begin{align*} V_\text{lower} &= \pi \int_0^h f_{BC}(y)^2-f_{AB}(y)^2 \dd y \\ &= \pi\int_0^h (3 + \sqrt{4-y})^2 - (3 - \sqrt{4-y})^2 \dd y \end{align*}

Let A=3A = 3 and B=4yB = \sqrt{4-y}. Then,
(3+4y)2(34y)2=(A+B)2(AB)2=4AB=124y.\begin{align*} &(3 + \sqrt{4-y})^2 - (3 - \sqrt{4-y})^2 \\ &= (A+B)^2 - (A-B)^2 \\ &= 4AB \\ &= 12\sqrt{4-y}. \end{align*}

And so, we have that:
Vlower=π0h(3+4y)2(34y)2 ⁣dy=π0h124y ⁣dy=12π0h4y ⁣dy=12π0h(4y)1/2 ⁣dy=12π[2(4y)3/23]0h=12π(2(4h)3/23+2(40)3/23)=12π(2(4h)3/23+163)=12π(13)(2(4h)3/2+16)=12π(13)(2)((4h)3/2+8)=8π((4h)3/2+8)=8π(8(4h)3/2)\begin{align*} V_\text{lower} &= \pi\int_0^h (3 + \sqrt{4-y})^2 - (3 - \sqrt{4-y})^2 \dd y \\ &= \pi\int_0^h 12\sqrt{4-y} \dd y \\ &= 12\pi\int_0^h \sqrt{4-y} \dd y \\ &= 12\pi\int_0^h (4-y)^{1/2} \dd y \\ &= 12\pi\[-\frac{2(4-y)^{3/2}}{3}\]_0^h \\ &= 12\pi \(-\frac{2(4-h)^{3/2}}{3} + \frac{2(4-0)^{3/2}}{3}\) \\ &= 12\pi \(-\frac{2(4-h)^{3/2}}{3} + \frac{16}{3}\) \\ &= 12\pi \(\frac{1}{3}\)(-2(4-h)^{3/2} + 16) \\ &= 12\pi \(\frac{1}{3}\)(2)(-(4-h)^{3/2} + 8) \\ &= 8\pi(-(4-h)^{3/2} + 8) \\ &= 8\pi(8-(4-h)^{3/2}) \end{align*}

which matches the provided expression for volume.

(ii) If the upper and the lower layers have the same volume, find the value of hh. (You leave your answer of hh in three decimal places).

Since the integral found for the lower portion is valid for the entire jelly ring, we simply need to change its bound to reflect the upper portion.
Vupper=πh4124y ⁣dy=12πh44y ⁣dy=12π[2(4y)3/23]h4=12π(2(44)3/23+2(4h)3/23)=24π(4h)3/23=8π(4h)3/2\begin{align*} V_\text{upper} &= \pi\int_h^4 12\sqrt{4-y}\dd y \\ &= 12\pi\int_h^4 \sqrt{4-y}\dd y \\ &= 12\pi\[-\frac{2(4-y)^{3/2}}{3}\]_h^4 \\ &= 12\pi \(-\cancel{\frac{2(4-4)^{3/2}}{3}} + \frac{2(4-h)^{3/2}}{3}\) \\ &= \frac{24\pi(4-h)^{3/2}}{3} \\ &= 8\pi (4-h)^{3/2} \end{align*}

Since Vupper=VlowerV_\text{upper} = V_\text{lower}, we can then solve for hh.
Vupper=Vlower8π(4h)3/2=8π(8(4h)3/2)(4h)3=8(4h)32(4h)3=8(4h)3=4(4h)3=164h=163h=223+41.480\begin{align*} V_\text{upper} &= V_\text{lower} \\ \cancel{8\pi} (4-h)^{3/2} &= \cancel{8\pi}(8-(4-h)^{3/2}) \\ \sqrt{(4-h)^3} &= 8-\sqrt{(4-h)^3} \\ 2\sqrt{(4-h)^3} &= 8 \\ \sqrt{(4-h)^3} &= 4 \\ (4-h)^3 &= 16 \\ 4-h &= \sqrt[3]{16} \\ h &= -2\sqrt[3]{2} + 4 \\ &\approx 1.480 \end{align*}

(c) If milk is poured into the center of the jelly ring until it is fully filled. Find the volume of the milk required.

Revolving fAB(y)f_{AB}(y) around the y-axis produces the volume of the hole. So, its volume is also the volume of the milk.

Vmilk=π04fAB(y)2 ⁣dy=π04(34y)2 ⁣dy=π04(9+(4y)64y) ⁣dy=π04(13y6(4y)1/2) ⁣dy=π[13yy22+12(4y)3/23]04=π[13yy22+4(4y)3/2]04=π(13(4)1624(4)3/2)=12π\begin{align*} V_\text{milk} &= \pi\int_0^4 f_{AB}(y)^2 \dd y \\ &= \pi\int_0^4 (3-\sqrt{4-y})^2 \dd y \\ &= \pi\int_0^4 (9+(4-y) - 6\sqrt{4-y}) \dd y \\ &= \pi\int_0^4 \(13 - y - 6(4-y)^{1/2}\) \dd y \\ &= \pi\[13y - \frac{y^2}{2} + \frac{12(4-y)^{3/2}}{3}\]_0^4 \\ &= \pi\[13y - \frac{y^2}{2} + 4(4-y)^{3/2}\]_0^4 \\ &= \pi\(13(4) - \frac{16}{2} - 4(4)^{3/2}\) \\ &= 12\pi \end{align*}