Homework 5

% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2.2em}

Mos Kullathon
921425216

1. Evaluate the following integrals

(a) xcos(5x) ⁣dx\displaystyle\int x\cos(5x)\dd x

u=x    u=1v=cos(5x)    v=15sin(5x)xcos(5x) ⁣dx=uvvu ⁣dx=x5sin(5x)15sin(5x) ⁣dx=x5sin(5x)15sin(5x) ⁣dx=x5sin(5x)15(15cos(5x))+c=15sin(5x)+125cos(5x)+c\begin{darray}{cc} u = x &\implies& u' = 1 \\ v' = \cos(5x) &\implies& v = \frac{1}{5}\sin(5x) \end{darray} \\ \begin{align*} \int x\cos(5x)\dd x &= uv - \int vu' \dd x \\ &= \frac{x}{5}\sin(5x) - \int\frac{1}{5}\sin(5x)\dd x \\ &= \frac{x}{5}\sin(5x) - \frac{1}{5}\int\sin(5x)\dd x \\ &= \frac{x}{5}\sin(5x) - \frac{1}{5}\(-\frac{1}{5}\cos(5x)\) + c \\ &= \frac{1}{5}\sin(5x) + \frac{1}{25}\cos(5x) + c \end{align*}

(b) 01x2ex ⁣dx\displaystyle\int_0^1 x^2e^{-x}\dd x

u=x2    u=2xv=ex    v=ex01x2ex ⁣dx=[uv]0101vu ⁣dx=[x2ex]01012xex ⁣dx=[x2ex]01+201xex ⁣dxp=x    p=1q=ex    q=ex01xex ⁣dx=[pq]0101qp ⁣dx=[xex]0101ex ⁣dx=[xex]01+[ex]01=1e1e+1=2+ee01x2ex ⁣dx=[x2ex]01+2(2+ee)=1e+4+2ee=5+2ee\begin{darray}{cc} u = x^2 &\implies& u' = 2x \\ v' = e^{-x} &\implies& v = -e^{-x} \end{darray} \\ \begin{align*} \int_0^1 x^2 e^{-x}\dd x &= \bigg[uv\bigg]_0^1 - \int_0^1 vu' \dd x \\ &= \bigg[-x^2e^{-x}\bigg]_0^1 - \int_0^1 -2xe^{-x} \dd x \\ &= \bigg[-x^2e^{-x}\bigg]_0^1 + 2\int_0^1 xe^{-x} \dd x \end{align*} \\ \begin{darray}{cc} p = x &\implies& p' = 1 \\ q' = e^{-x} &\implies& q = -e^{-x} \end{darray} \\ \begin{align*} \int_0^1 xe^{-x}\dd x &= \bigg[pq\bigg]_0^1 - \int_0^1 qp' \dd x \\ &= \bigg[-xe^{-x}\bigg]_0^1 - \int_0^1 -e^{-x}\dd x \\ &= \bigg[-xe^{-x}\bigg]_0^1 + \bigg[-e^{-x}\bigg]_0^1 \\ &= -\frac{1}{e} - \frac{1}{e} + 1 \\ &= \frac{-2+e}{e} \end{align*} \\ \begin{align*} \therefore\int_0^1 x^2e^{-x}\dd x &= \bigg[-x^2e^{-x}\bigg]_0^1 + 2\(\frac{-2+e}{e}\) \\ &= -\frac{1}{e} + \frac{-4+2e}{e} \\ &= \frac{-5+2e}{e} \end{align*}

(c) x(lnx)2 ⁣dx\displaystyle\int x(\ln x)^2\dd x

u=(lnx)2    u=2xlnxv=x    v=12x2x(lnx)2 ⁣dx=uvvu ⁣dx=12x2ln2xxlnx ⁣dxp=lnx    p=1xq=x    q=12x2xlnx ⁣dx=pqqp ⁣dx=12x2lnx 12x ⁣dx=12x2lnx14x2+cx(lnx)2 ⁣dx=12x2ln2x12x2lnx+14x2+c=14x2(2ln2(x)2ln(x)+1)+c\begin{darray}{cc} u = (\ln x)^2 &\implies& u' = \frac{2}{x}\ln x \\ v' = x &\implies& v = \frac{1}{2}x^2 \end{darray} \\ \begin{align*} \int x(\ln x)^2 \dd x &= uv - \int vu'\dd x \\ &= \frac{1}{2}x^2\ln^2 x - \int x\ln x \dd x \end{align*} \\ \begin{darray}{cc} p = \ln x &\implies& p' = \frac{1}{x} \\ q' = x &\implies& q = \frac{1}{2}x^2 \end{darray} \\ \begin{align*} \int x \ln x \dd x &= pq - \int qp'\dd x \\ &= \frac{1}{2}x^2\ln x - \int\ \frac{1}{2}x\dd x \\ &= \frac{1}{2}x^2\ln x - \frac{1}{4}x^2 + c \end{align*} \\ \begin{align*} \therefore \int x(\ln x)^2\dd x &= \frac{1}{2}x^2\ln^2x - \frac{1}{2}x^2\ln x + \frac{1}{4}x^2 + c \\ &= \frac{1}{4}x^2 (2\ln^2(x) - 2\ln(x) + 1) + c \end{align*}

(d) xcsc2x ⁣dx\displaystyle\int x \csc^2 x\dd x

u=x    u=1v=csc2x    v=cotxxcsc2x ⁣dx=uvvu ⁣dx=xcot(x)cotx ⁣dx=xcot(x)+lnsinx+c\begin{darray}{cc} u = x &\implies& u' = 1 \\ v' = \csc^2x &\implies& v = -\cot x \end{darray} \\ \begin{align*} \int x \csc^2x\dd x &= uv - \int vu'\dd x \\ &= -x\cot(x)- \int-\cot x\dd x \\ &= -x\cot(x)+ \ln|\sin x| + c \end{align*}

(e) 0π/4excos(2x) ⁣dx\displaystyle\int_0^{\pi/4} e^x\cos(2x)\dd x

u=cos(2x)    u=2sin(2x)v=ex    v=exexcos(2x) ⁣dx=uvvu ⁣dx=excos(2x)2exsin(2x) ⁣dx=excos(2x)+2exsin(2x) ⁣dxp=sin(2x)    p=2cos(2x)q=ex    q=exexsin(2x) ⁣dx=pqqp ⁣dx=exsin(2x)2excos(2x)=exsin(2x)2excos(2x)excos(2x) ⁣dx=excos(2x)+2(exsin(2x)2excos(2x))=excos(2x)+2exsin(2x)4excos(2x)5excos(2x) ⁣dx=excos(2x)+2exsin(2x)excos(2x) ⁣dx=15(excos(2x)+2exsin(2x))+c0π/4excos(2x) ⁣dx=[15(excos(2x)+2exsin(2x))]0π/4=15(2eπ/41)\begin{darray}{cc} u = \cos(2x) &\implies& u' = -2\sin(2x) \\ v' = e^x &\implies& v = e^x \end{darray} \\ \begin{align*} \int e^x\cos(2x)\dd x &= uv - \int vu'\dd x \\ &= e^x\cos(2x) - \int -2e^x\sin(2x) \dd x \\ &= e^x\cos(2x) + 2\int e^x\sin(2x)\dd x \end{align*} \\ \begin{darray}{cc} p = \sin(2x) &\implies& p' = 2\cos(2x) \\ q' = e^x &\implies& q = e^x \end{darray} \\ \begin{align*} \int e^x\sin(2x)\dd x &= pq - \int qp' \dd x \\ &= e^x\sin(2x) - \int2e^x\cos(2x) \\ &= e^x\sin(2x) -2 \int e^x\cos(2x) \end{align*} \\ \begin{align*} \int e^x\cos(2x)\dd x &= e^x\cos(2x) + 2 \(e^x\sin(2x) -2 \int e^x\cos(2x)\) \\ &= e^x\cos(2x) + 2e^x\sin(2x) - 4\int e^x\cos(2x) \\ 5 \int e^x\cos(2x)\dd x &= e^x\cos(2x) + 2e^x\sin(2x) \\ \int e^x\cos(2x)\dd x &= \frac{1}{5}(e^x\cos(2x) + 2e^x\sin(2x)) + c \end{align*} \\ \begin{align*} \therefore \int_0^{\pi/4} e^x\cos(2x)\dd x &= \[\frac{1}{5}(e^x\cos(2x) + 2e^x\sin(2x))\]_0^{\pi/4} \\ &= \frac{1}{5}(2e^{\pi/4}-1) \end{align*}

(f) 0πecostsin(2t) ⁣dt\displaystyle\int_0^\pi e^{\cos t} \sin(2t)\dd t (Recall sin(2t)=2sintcost\sin(2t)=2\sin t\cos t)

u=cost     ⁣du=sint ⁣dt     ⁣dt=1sint ⁣dut=0    u=cos0=1t=π    u=cosπ=10πecostsin(2t) ⁣dt=211ecostsintcost ⁣dt=211ueusint(1sint) ⁣du=211ueu ⁣du=211ueu ⁣dup=u    p=1q=eu    q=eu11ueu ⁣du=[pq]11qp ⁣du=[ueu]11eu ⁣du=[ueu]11[eu]11=e+1ee+1e=2e0πecostsin(2t) ⁣dt=211ecostsintcost ⁣dt=22e=4e\begin{darray}{cc} u = \cos t &\implies& \dd u = -\sin t\dd t \\ &\iff& \dd t = \frac{1}{-\sin t}\dd u \\ t = 0 &\implies& u = \cos 0 = 1 \\ t = \pi &\implies& u = \cos\pi = -1 \end{darray} \\ \begin{align*} \int_0^\pi e^{\cos t}\sin(2t)\dd t &= 2 \int_1^{-1} e^{\cos t}\sin t\cos t \dd t \\ &= 2\int_1^{-1} ue^u\cancel{\sin t} \(\frac{1}{\cancel{-\sin t}}\)\dd u \\ &= -2\int_1^{-1} ue^u\dd u \\ &= 2\int_{-1}^1 ue^u\dd u \end{align*} \\ \begin{darray}{cc} p = u &\implies& p' = 1 \\ q' = e^u &\implies& q = e^u \end{darray} \\ \begin{align*} \int_{-1}^1 ue^u\dd u &= \bigg[pq\bigg]_{-1}^1 - \int qp' \dd u \\ &= \bigg[ue^u\bigg]_{-1}^1 - \int e^u \dd u \\ &= \bigg[ue^u\bigg]_{-1}^1 - \bigg[e^u\bigg]_{-1}^1 \\ &= e + \frac{1}{e} - e + \frac{1}{e} \\ &= \frac{2}{e} \\ \end{align*} \\ \begin{align*} \therefore \int_0^\pi e^{\cos t}\sin(2t)\dd t &= 2 \int_1^{-1} e^{\cos t}\sin t\cos t \dd t \\ &= 2 \cdot\frac{2}{e} \\ &= \frac{4}{e} \end{align*}

2. Show that the reduction formula for In=(lnx)n ⁣dx\displaystyle I_n = \int(\ln x)^n \dd x is In=x(lnx)nnIn1I_n = x (\ln x)^n - nI_{n-1}

u=(lnx)n    u=nx(lnx)n1v=1    v=xIn=(lnx)n=uvvu ⁣dx=x(lnx)nnxx(lnx)n1=x(lnx)nn(lnx)n1In1=x(lnx)nnIn1\begin{darray}{cc} u = (\ln x)^n &\implies& u' = \frac{n}{x}(\ln x)^{n-1} \\ v' = 1 &\implies& v = x \end{darray} \\ \begin{align*} I_n = \int (\ln x)^n &= uv - \int vu'\dd x \\ &= x(\ln x)^n - \int\frac{n\cancel{x}}{\cancel{x}}(\ln x)^{n-1} \\ &= x(\ln x)^n - n\underbrace{\int (\ln x)^{n-1}}_{I_{n-1}} \\ &= x(\ln x)^n - nI_{n-1} \end{align*}

Book Section 3.3:

(135)  ⁣dxx2a2 ⁣dx\displaystyle\int\frac{\dd x}{\sqrt{x^2-a^2}}\dd x

 ⁣dxx2a2 ⁣dx=1x2a2 ⁣dxx=asecθ     ⁣dx=asecθtanθ ⁣dθ    θ=sec1(xa)1x2a2 ⁣dx=1a2sec2θa2(asecθtanθ ⁣dθ)=1a2(sec2θ1)(asecθtanθ ⁣dθ)=1a2tan2θ(asecθtanθ ⁣dθ)=1atanθ(asecθtanθ ⁣dθ)=secθ ⁣dθ=lntanθ+secθ+c=lntan(sec1(xa))+sec(sec1(xa))+c=lntan(sec1(xa))+xa+c=lnxa11x2a2+xa+c=lnxax2x2a2x2+xa+c=lnxa(1x2)x2a2+xa+c=ln1ax2a2+xa+c=ln1a(x2a2+x)+c=ln1a+lnx2a2+x+c=lnx2a2+x+c\int\frac{\dd x}{\sqrt{x^2-a^2}}\dd x = \int\frac{1}{\sqrt{x^2-a^2}}\dd x \\ \begin{darray}{cc} x = a\sec\theta &\implies& \dd x = a\sec\theta\tan\theta\dd\theta \\ &\iff& \theta = \sec^{-1}\(\frac{x}{a}\) \end{darray} \\ \begin{align*} \int\frac{1}{\sqrt{x^2-a^2}}\dd x &= \int\frac{1}{\sqrt{a^2\sec^2\theta - a^2}} (a\sec\theta\tan\theta\dd\theta) \\ &= \int\frac{1}{\sqrt{a^2(\sec^2\theta - 1)}} (a\sec\theta\tan\theta\dd\theta) \\ &= \int\frac{1}{\sqrt{a^2\tan^2\theta}} (a\sec\theta\tan\theta\dd\theta) \\ &= \int\frac{1}{\cancel{a\tan\theta}} (\cancel{a}\sec\theta\cancel{\tan\theta}\dd\theta) \\ &= \int\sec\theta\dd\theta \\ &= \ln|\tan\theta + \sec\theta| + c \\ &= \ln\left|\tan\(\sec^{-1}\(\frac{x}{a}\)\) + \sec\(\sec^{-1}\(\frac{x}{a}\)\)\right| + c \\ &= \ln\left|\tan\(\sec^{-1}\(\frac{x}{a}\)\) + \frac{x}{a}\right| + c \\ &= \ln|\frac{x}{a}\sqrt{1-\frac{1}{\frac{x^2}{a^2}}} + \frac{x}{a}| + c \\ &= \ln\left|\frac{x}{a}\sqrt{\frac{x^2}{x^2} - \frac{a^2}{x^2}} + \frac{x}{a}\right| + c \\ &= \ln\left|\frac{x}{a}\sqrt{\(\frac{1}{x^2}\)x^2-a^2} + \frac{x}{a}\right| + c \\ &= \ln\left|\frac{1}{a}\sqrt{x^2-a^2} + \frac{x}{a}\right| + c \\ &= \ln\left|\frac{1}{a}(\sqrt{x^2-a^2} + x) \right| + c \\ &= \ln\left|\frac{1}{a}\right| + \ln|\sqrt{x^2-a^2} + x| + c \\ &= \ln|\sqrt{x^2-a^2} + x| + c \end{align*}

(140)  ⁣dx(1+x2)2\displaystyle\int\frac{\dd x}{(1+x^2)^2}

 ⁣dx(1+x2)2=1(1+x2)2 ⁣dxx=tanθ     ⁣dx=sec2θ ⁣dθ    θ=tan1x    sinθ=x1+x2    cosθ=11+x21(1+x2)2 ⁣dx=1(1+tan2θ)2(sec2θ ⁣dθ)=1sec4θ(sec2 ⁣dθ)=1sec2θ ⁣dθ=cos2θ ⁣dθ=12(cos(2θ)+1) ⁣dθ=12cos(2θ)+1 ⁣dθ=12(θ+12sin2θ)+c=12(θ+122sinθcosθ)+c=12(θ+sinθcosθ)+c=12(tan1(x)+x1+x2)+c\int\frac{\dd x}{(1+x^2)^2} = \int\frac{1}{(1+x^2)^2}\dd x \\ \begin{darray}{cc} x = \tan\theta &\implies& \dd x = \sec^2\theta\dd\theta \\ &\iff& \theta = \tan^{-1}x \\ &\iff& \sin\theta = \frac{x}{\sqrt{1+x^2}} \\ &\iff& \cos\theta = \frac{1}{\sqrt{1+x^2}} \end{darray} \\ \begin{align*} \int\frac{1}{(1+x^2)^2}\dd x &= \int\frac{1}{(1 + \tan^2\theta)^2} (\sec^2\theta\dd\theta) \\ &= \int\frac{1}{\sec^4\theta}(\sec^2\dd\theta) \\ &= \int\frac{1}{\sec^2\theta}\dd\theta \\ &= \int\cos^2\theta\dd\theta \\ &= \int\frac{1}{2}(\cos(2\theta) + 1)\dd\theta \\ &= \frac{1}{2}\int\cos(2\theta) + 1 \dd\theta \\ &= \frac{1}{2}\(\theta + \frac{1}{2}\sin2\theta\) + c \\ &= \frac{1}{2}\(\theta+\frac{1}{2}2\sin\theta\cos\theta\) + c \\ &= \frac{1}{2}(\theta + \sin\theta\cos\theta) + c \\ &= \frac{1}{2} \(\tan^{-1}(x) + \frac{x}{1+x^2}\) + c \end{align*}

(142) x225x ⁣dx\displaystyle\int\frac{\sqrt{x^2-25}}{x}\dd x

r2=25    r=5x=rsecθ     ⁣dx=rsecθtanθ ⁣dθ    θ=sec1(xr)    secθ=xr    tanθ=x2r2rx225x ⁣dx=r2sec2θr2rsecθ(rsecθtanθ ⁣dθ)=r2(sec2θ1)rsecθ(rsecθtanθ ⁣dθ)=r2tan2θrsecθ(rsecθtanθ ⁣dθ)=rtanθrsecθ(rsecθtanθ ⁣dθ)=rtan2θ ⁣dθ=rsin2θcos2θ ⁣dθ=r1cos2θcos2θ ⁣dθ=r1cos2θ1 ⁣dθ=rsec2(θ)1 ⁣dθ=r(tan(θ)θ)+c=r(x2r2rsec1(xr))+c=x2r2rsec1(xr)+c=x2255sec1(x5)+c\begin{darray}{cc} r^2 = 25 &\implies& r = 5 \\ x = r\sec\theta &\implies& \dd x = r\sec\theta\tan\theta\dd\theta \\ &\iff& \theta = \sec^{-1}\(\frac{x}{r}\) \\ &\iff& \sec\theta = \frac{x}{r} \\ &\iff& \tan\theta = \frac{\sqrt{x^2 - r^2}}{r} \end{darray} \\ \begin{align*} \int\frac{\sqrt{x^2-25}}{x}\dd x &= \int\frac{\sqrt{r^2\sec^2\theta - r^2}}{r\sec\theta} (r\sec\theta\tan\theta\dd\theta) \\ &= \int\frac{\sqrt{r^2(\sec^2\theta - 1)}}{r\sec\theta} (r\sec\theta\tan\theta\dd\theta) \\ &= \int\frac{\sqrt{r^2\tan^2\theta}}{r\sec\theta} (r\sec\theta\tan\theta\dd\theta) \\ &= \int\frac{r\tan\theta}{\cancel{r\sec}\theta} (\cancel{r\sec}\theta\tan\theta\dd\theta) \\ &= r\int\tan^2\theta\dd\theta \\ &= r\int\frac{\sin^2\theta}{\cos^2\theta}\dd\theta \\ &= r\int\frac{1-\cos^2\theta}{\cos^2\theta}\dd\theta \\ &= r\int\frac{1}{\cos^2\theta} - 1 \dd\theta \\ &= r\int\sec^2(\theta) - 1 \dd\theta \\ &= r(\tan(\theta)-\theta) + c \\ &= r\(\frac{\sqrt{x^2 - r^2}}{r} - \sec^{-1}\(\frac{x}{r}\)\) + c \\ &= \sqrt{x^2 - r^2} - r\sec^{-1}\(\frac{x}{r}\) + c \\ &= \sqrt{x^2 - 25} - 5\sec^{-1}\(\frac{x}{5}\) + c \end{align*}

(153) 11(1x2)3/2 ⁣dx\displaystyle\int_{-1}^1 (1-x^2)^{3/2}\dd x

11(1x2)3/2 ⁣dx=11(1x2)3 ⁣dxx=sinθ     ⁣dx=cosθ ⁣dθ    θ=sin1(x)x=sinθ=1    θ=π2x=sinθ=1    θ=π211(1x2)3 ⁣dx=π/2π/2(1sin2θ)3(cosθ ⁣dθ)=π/2π/2(cos2θ)3(cosθ ⁣dθ)=π/2π/2(cos2θ)2cos2θ(cosθ ⁣dθ)=π/2π/2cos2θcosθ(cosθ ⁣dθ)=π/2π/2cos2θcos2θ ⁣dθ=π/2π/212(cos(2θ)+1)12(cos(2θ)+1) ⁣dθ=14π/2π/2(cos(2θ)+1)2 ⁣dθ=14π/2π/2cos2(2θ)+1+2cos(2θ) ⁣dθ=14π/2π/212(cos(4θ)+1)+1+2cos(2θ) ⁣dθ=14π/2π/212cos(4θ)+12+1+2cos(2θ) ⁣dθ=14π/2π/212(cos(4θ)+1+2+4cos(2θ)) ⁣dθ=18π/2π/2(cos(4θ)+4cos(2θ)+3) ⁣dθ=18[sin(4θ)4+4sin(2θ)+3θ]π/2π/2=18(32π(32π))=38π\int_{-1}^1 (1-x^2)^{3/2}\dd x = \int_{-1}^1 \sqrt{(1-x^2)^3}\dd x \\ \begin{darray}{cc} x = \sin\theta &\implies& \dd x= \cos\theta\dd\theta \\ &\iff& \theta = \sin^{-1}(x) \\ x = \sin\theta = -1 &\implies& \theta = -\frac{\pi}{2} \\ x = \sin\theta = 1 &\implies& \theta = \frac{\pi}{2} \end{darray} \\ \begin{align*} \int_{-1}^1\sqrt{(1-x^2)^3}\dd x &= \int_{-\pi/2}^{\pi/2}\sqrt{(1-\sin^2\theta)^3} \cdot(\cos\theta\dd\theta) \\ &= \int_{-\pi/2}^{\pi/2}\sqrt{(\cos^2\theta)^3} \cdot(\cos\theta\dd\theta) \\ &= \int_{-\pi/2}^{\pi/2}\sqrt{(\cos^2\theta)^2\cos^2\theta} \cdot(\cos\theta\dd\theta) \\ &= \int_{-\pi/2}^{\pi/2}\cos^2\theta\cos\theta \cdot(\cos\theta\dd\theta) \\ &= \int_{-\pi/2}^{\pi/2}\cos^2\theta\cos^2\theta\dd\theta \\ &= \int_{-\pi/2}^{\pi/2}\frac{1}{2}(\cos(2\theta)+1)\cdot\frac{1}{2}(\cos(2\theta)+1)\dd\theta \\ &= \frac{1}{4}\int_{-\pi/2}^{\pi/2}(\cos(2\theta)+1)^2\dd\theta \\ &= \frac{1}{4}\int_{-\pi/2}^{\pi/2}\cos^2(2\theta) + 1 + 2\cos(2\theta)\dd\theta \\ &= \frac{1}{4}\int_{-\pi/2}^{\pi/2}\frac{1}{2}(\cos(4\theta) + 1) + 1 + 2\cos(2\theta)\dd\theta \\ &= \frac{1}{4}\int_{-\pi/2}^{\pi/2}\frac{1}{2}\cos(4\theta) + \frac{1}{2} + 1 + 2\cos(2\theta)\dd\theta \\ &= \frac{1}{4}\int_{-\pi/2}^{\pi/2}\frac{1}{2}(\cos(4\theta) + 1 + 2 + 4\cos(2\theta))\dd\theta \\ &= \frac{1}{8}\int_{-\pi/2}^{\pi/2}(\cos(4\theta)+4\cos(2\theta)+3)\dd\theta \\ &= \frac{1}{8}\[\frac{\sin(4\theta)}{4}+4\sin(2\theta)+3\theta\]_{-\pi/2}^{\pi/2} \\ &= \frac{1}{8}\(\frac{3}{2}\pi - \(-\frac{3}{2}\pi\)\) \\ &= \frac{3}{8}\pi \end{align*}