Mos Kullathon
921425216
u=xv′=cos(5x)⟹⟹u′=1v=51sin(5x)∫xcos(5x)dx=uv−∫vu′dx=5xsin(5x)−∫51sin(5x)dx=5xsin(5x)−51∫sin(5x)dx=5xsin(5x)−51(−51cos(5x))+c=51sin(5x)+251cos(5x)+c
u=x2v′=e−x⟹⟹u′=2xv=−e−x∫01x2e−xdx=[uv]01−∫01vu′dx=[−x2e−x]01−∫01−2xe−xdx=[−x2e−x]01+2∫01xe−xdxp=xq′=e−x⟹⟹p′=1q=−e−x∫01xe−xdx=[pq]01−∫01qp′dx=[−xe−x]01−∫01−e−xdx=[−xe−x]01+[−e−x]01=−e1−e1+1=e−2+e∴∫01x2e−xdx=[−x2e−x]01+2(e−2+e)=−e1+e−4+2e=e−5+2e
u=(lnx)2v′=x⟹⟹u′=x2lnxv=21x2∫x(lnx)2dx=uv−∫vu′dx=21x2ln2x−∫xlnxdxp=lnxq′=x⟹⟹p′=x1q=21x2∫xlnxdx=pq−∫qp′dx=21x2lnx−∫ 21xdx=21x2lnx−41x2+c∴∫x(lnx)2dx=21x2ln2x−21x2lnx+41x2+c=41x2(2ln2(x)−2ln(x)+1)+c
u=xv′=csc2x⟹⟹u′=1v=−cotx∫xcsc2xdx=uv−∫vu′dx=−xcot(x)−∫−cotxdx=−xcot(x)+ln∣sinx∣+c
u=cos(2x)v′=ex⟹⟹u′=−2sin(2x)v=ex∫excos(2x)dx=uv−∫vu′dx=excos(2x)−∫−2exsin(2x)dx=excos(2x)+2∫exsin(2x)dxp=sin(2x)q′=ex⟹⟹p′=2cos(2x)q=ex∫exsin(2x)dx=pq−∫qp′dx=exsin(2x)−∫2excos(2x)=exsin(2x)−2∫excos(2x)∫excos(2x)dx5∫excos(2x)dx∫excos(2x)dx=excos(2x)+2(exsin(2x)−2∫excos(2x))=excos(2x)+2exsin(2x)−4∫excos(2x)=excos(2x)+2exsin(2x)=51(excos(2x)+2exsin(2x))+c∴∫0π/4excos(2x)dx=[51(excos(2x)+2exsin(2x))]0π/4=51(2eπ/4−1)
u=costt=0t=π⟹⟺⟹⟹du=−sintdtdt=−sint1duu=cos0=1u=cosπ=−1∫0πecostsin(2t)dt=2∫1−1ecostsintcostdt=2∫1−1ueusint(−sint1)du=−2∫1−1ueudu=2∫−11ueudup=uq′=eu⟹⟹p′=1q=eu∫−11ueudu=[pq]−11−∫qp′du=[ueu]−11−∫eudu=[ueu]−11−[eu]−11=e+e1−e+e1=e2∴∫0πecostsin(2t)dt=2∫1−1ecostsintcostdt=2⋅e2=e4
u=(lnx)nv′=1⟹⟹u′=xn(lnx)n−1v=xIn=∫(lnx)n=uv−∫vu′dx=x(lnx)n−∫xnx(lnx)n−1=x(lnx)n−nIn−1∫(lnx)n−1=x(lnx)n−nIn−1
∫x2−a2dxdx=∫x2−a21dxx=asecθ⟹⟺dx=asecθtanθdθθ=sec−1(ax)∫x2−a21dx=∫a2sec2θ−a21(asecθtanθdθ)=∫a2(sec2θ−1)1(asecθtanθdθ)=∫a2tan2θ1(asecθtanθdθ)=∫atanθ1(asecθtanθdθ)=∫secθdθ=ln∣tanθ+secθ∣+c=lntan(sec−1(ax))+sec(sec−1(ax))+c=lntan(sec−1(ax))+ax+c=ln∣ax1−a2x21+ax∣+c=lnaxx2x2−x2a2+ax+c=lnax(x21)x2−a2+ax+c=lna1x2−a2+ax+c=lna1(x2−a2+x)+c=lna1+ln∣x2−a2+x∣+c=ln∣x2−a2+x∣+c
∫(1+x2)2dx=∫(1+x2)21dxx=tanθ⟹⟺⟺⟺dx=sec2θdθθ=tan−1xsinθ=1+x2xcosθ=1+x21∫(1+x2)21dx=∫(1+tan2θ)21(sec2θdθ)=∫sec4θ1(sec2dθ)=∫sec2θ1dθ=∫cos2θdθ=∫21(cos(2θ)+1)dθ=21∫cos(2θ)+1dθ=21(θ+21sin2θ)+c=21(θ+212sinθcosθ)+c=21(θ+sinθcosθ)+c=21(tan−1(x)+1+x2x)+c
r2=25x=rsecθ⟹⟹⟺⟺⟺r=5dx=rsecθtanθdθθ=sec−1(rx)secθ=rxtanθ=rx2−r2∫xx2−25dx=∫rsecθr2sec2θ−r2(rsecθtanθdθ)=∫rsecθr2(sec2θ−1)(rsecθtanθdθ)=∫rsecθr2tan2θ(rsecθtanθdθ)=∫rsecθrtanθ(rsecθtanθdθ)=r∫tan2θdθ=r∫cos2θsin2θdθ=r∫cos2θ1−cos2θdθ=r∫cos2θ1−1dθ=r∫sec2(θ)−1dθ=r(tan(θ)−θ)+c=r(rx2−r2−sec−1(rx))+c=x2−r2−rsec−1(rx)+c=x2−25−5sec−1(5x)+c
∫−11(1−x2)3/2dx=∫−11(1−x2)3dxx=sinθx=sinθ=−1x=sinθ=1⟹⟺⟹⟹dx=cosθdθθ=sin−1(x)θ=−2πθ=2π∫−11(1−x2)3dx=∫−π/2π/2(1−sin2θ)3⋅(cosθdθ)=∫−π/2π/2(cos2θ)3⋅(cosθdθ)=∫−π/2π/2(cos2θ)2cos2θ⋅(cosθdθ)=∫−π/2π/2cos2θcosθ⋅(cosθdθ)=∫−π/2π/2cos2θcos2θdθ=∫−π/2π/221(cos(2θ)+1)⋅21(cos(2θ)+1)dθ=41∫−π/2π/2(cos(2θ)+1)2dθ=41∫−π/2π/2cos2(2θ)+1+2cos(2θ)dθ=41∫−π/2π/221(cos(4θ)+1)+1+2cos(2θ)dθ=41∫−π/2π/221cos(4θ)+21+1+2cos(2θ)dθ=41∫−π/2π/221(cos(4θ)+1+2+4cos(2θ))dθ=81∫−π/2π/2(cos(4θ)+4cos(2θ)+3)dθ=81[4sin(4θ)+4sin(2θ)+3θ]−π/2π/2=81(23π−(−23π))=83π