% Differentials d[something]/d[something]
\gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}}
% Shortcut for dy/dx
\gdef\dydx{\diff{y}{x}}
% Differential letter "d" with a thin space before it
\gdef\dd{\mathop{}\!\mathrm{d}}
% Shortcut for not implies
\gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;}
% Shortcuts for extended brackets
\gdef\({\left(} \gdef\){\right)}
\gdef\[{\left[} \gdef\]{\right]}
% Shortcut for real number symbol
\gdef\R{\mathbb{R}}
% More spacing between lines in arrays (override by using \[5em])
\gdef\arraystretch{2.2em}
Mos Kullathon
921425216
I n = ∫ sec n x d x = ∫ sec n − 2 x sec n x d x u = sec n − 2 x ⟹ u ′ = ( n − 2 ) sec n − 3 x sec x tan x = ( n − 2 ) sec n − 2 x tan x v ′ = sec 2 x ⟹ v = tan x I n = ∫ sec n − 2 x sec n x d x = u v − ∫ v u ′ d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n − 2 x tan 2 x d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n − 2 x ( sec 2 ( x ) − 1 ) d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n ( x ) − sec n − 2 d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n x d x ⏟ I n + ( n − 2 ) ∫ sec n − 2 x d x ⏟ I n − 2 = tan x sec n − 2 ( x ) − ( n − 2 ) I n + ( n − 2 ) I n − 2 I n + ( n − 2 ) I n = tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 I n ( 1 + ( n − 2 ) ) = tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 I n = tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 1 + ( n − 2 ) = tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 n − 1 = tan x sec n − 2 x n − 1 + n − 2 n − 1 I n − 2 \begin{align*}
I_n &= \int\sec^nx\dd x
\\
&= \int\sec^{n-2}x\sec^nx\dd x
\end{align*}
\\
\begin{align*}
u = \sec^{n-2}x &\implies& u' &= (n-2)\sec^{n-3}x\sec x\tan x
\\
&&&= (n-2)\sec^{n-2}x\tan x
\\
v' = \sec^2x &\implies& v &= \tan x
\end{align*}
\\
\begin{align*}
I_n &= \int\sec^{n-2}x\sec^nx\dd x
\\
&= uv - \int vu'\dd x
\\
&= \tan x\sec^{n-2} (x) - (n-2)\int\sec^{n-2}x\tan^2x\dd x
\\
&= \tan x\sec^{n-2} (x) - (n-2)\int\sec^{n-2}x(\sec^2(x) - 1)\dd x
\\
&= \tan x\sec^{n-2} (x) - (n-2)\int\sec^n(x) - \sec^{n-2}\dd x
\\
&= \tan x\sec^{n-2} (x) - (n-2)
\underbrace{\int\sec^n x\dd x}_{I_n}
+ (n-2)
\underbrace{\int\sec^{n-2}x\dd x}_{I_{n-2}}
\\
&= \tan x\sec^{n-2} (x) - (n-2)I_n
+ (n-2)I_{n-2}
\end{align*}
\\
\begin{align*}
I_n + (n-2)I_n &= \tan x\sec^{n-2}(x) + (n-2)I_{n-2}
\\
I_n(1+(n-2))&= \tan x\sec^{n-2}(x)+ (n-2)I_{n-2}
\\
I_n &= \frac{\tan x\sec^{n-2}(x)+ (n-2)I_{n-2}}{1+(n-2)}
\\
&= \frac{\tan x\sec^{n-2}(x)+ (n-2)I_{n-2}}{n-1}
\\
&= \frac{\tan x\sec^{n-2}x}{n-1} + \frac{n-2}{n-1}I_{n-2}
\end{align*} I n = ∫ sec n x d x = ∫ sec n − 2 x sec n x d x u = sec n − 2 x v ′ = sec 2 x ⟹ ⟹ u ′ v = ( n − 2 ) sec n − 3 x sec x tan x = ( n − 2 ) sec n − 2 x tan x = tan x I n = ∫ sec n − 2 x sec n x d x = uv − ∫ v u ′ d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n − 2 x tan 2 x d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n − 2 x ( sec 2 ( x ) − 1 ) d x = tan x sec n − 2 ( x ) − ( n − 2 ) ∫ sec n ( x ) − sec n − 2 d x = tan x sec n − 2 ( x ) − ( n − 2 ) I n ∫ sec n x d x + ( n − 2 ) I n − 2 ∫ sec n − 2 x d x = tan x sec n − 2 ( x ) − ( n − 2 ) I n + ( n − 2 ) I n − 2 I n + ( n − 2 ) I n I n ( 1 + ( n − 2 )) I n = tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 = tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 = 1 + ( n − 2 ) tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 = n − 1 tan x sec n − 2 ( x ) + ( n − 2 ) I n − 2 = n − 1 tan x sec n − 2 x + n − 1 n − 2 I n − 2
I 5 = ∫ sec 5 d x = tan x sec 5 − 2 x 5 − 1 + 5 − 2 5 − 1 I 5 − 2 = tan x sec 3 x 4 + 3 4 I 3 = tan x sec 3 x 4 + 3 4 ( tan x sec 3 − 2 x 3 − 1 + 3 − 2 3 − 1 I 3 − 2 ) = tan x sec 3 x 4 + 3 4 ( tan x sec x 2 + 1 2 I 1 ) = tan x sec 3 x 4 + 3 4 ( tan x sec x 2 + 1 2 ∫ sec x d x ) = tan x sec 3 x 4 + 3 4 ( tan x sec x 2 + 1 2 ln ∣ tan ( x ) + sec ( x ) ∣ ) + C = tan x sec 3 x 4 + 3 8 ( tan x sec x + ln ∣ tan ( x ) + sec ( x ) ∣ ) + C = 1 8 ( 2 tan x sec 3 x + 3 ( tan x sec x + ln ∣ tan ( x ) + sec ( x ) ∣ ) ) + C \begin{align*}
I_5 &= \int\sec^5\dd x
\\
&= \frac{\tan x\sec^{5-2}x}{5-1}+\frac{5-2}{5-1}I_{5-2}
\\
&= \frac{\tan x\sec^{3}x}{4}+\frac{3}{4}I_{3}
\\
&= \frac{\tan x\sec^{3}x}{4}+\frac{3}{4}
\(\frac{\tan x\sec^{3-2}x}{3-1}+\frac{3-2}{3-1}I_{3-2}\)
\\
&= \frac{\tan x\sec^{3}x}{4}+\frac{3}{4}
\(\frac{\tan x\sec x}{2}+\frac{1}{2}I_{1}\)
\\
&= \frac{\tan x\sec^{3}x}{4}+\frac{3}{4}
\(\frac{\tan x\sec x}{2}+\frac{1}{2}\int\sec x\dd x\)
\\
&= \frac{\tan x\sec^{3}x}{4}+\frac{3}{4}
\(\frac{\tan x\sec x}{2}+\frac{1}{2}
\ln|\tan(x) + \sec(x)|\) + C
\\
&= \frac{\tan x\sec^{3}x}{4}+\frac{3}{8}
\(\tan x\sec x+\ln|\tan(x) + \sec(x)|\) + C
\\
&= \frac{1}{8}(2\tan x\sec^3 x +
3(\tan x\sec x + \ln|\tan(x) + \sec (x)|)) + C
\end{align*} I 5 = ∫ sec 5 d x = 5 − 1 tan x sec 5 − 2 x + 5 − 1 5 − 2 I 5 − 2 = 4 tan x sec 3 x + 4 3 I 3 = 4 tan x sec 3 x + 4 3 ( 3 − 1 tan x sec 3 − 2 x + 3 − 1 3 − 2 I 3 − 2 ) = 4 tan x sec 3 x + 4 3 ( 2 tan x sec x + 2 1 I 1 ) = 4 tan x sec 3 x + 4 3 ( 2 tan x sec x + 2 1 ∫ sec x d x ) = 4 tan x sec 3 x + 4 3 ( 2 tan x sec x + 2 1 ln ∣ tan ( x ) + sec ( x ) ∣ ) + C = 4 tan x sec 3 x + 8 3 ( tan x sec x + ln ∣ tan ( x ) + sec ( x ) ∣ ) + C = 8 1 ( 2 tan x sec 3 x + 3 ( tan x sec x + ln ∣ tan ( x ) + sec ( x ) ∣ )) + C
Find the integral by using the simplest method. Not all problems require integration by parts.
u = ln 2 x ⟹ d u = 1 x d x ⟺ d x = x d u ⟺ e u = 2 x ⟺ x = e u 2 ∫ sin ( ln 2 x ) d x = ∫ sin ( u ) e u 2 d u = 1 2 ∫ e u sin u d u p = sin u ⟹ p ′ = cos u q ′ = e u ⟹ q = e u ∫ e u sin u d u = p q − ∫ q p ′ d u = e u sin u − ∫ e u cos u d u r = cos u ⟹ r ′ = − sin u s ′ = e u ⟹ s = e u ∫ e u cos u d u = r s − ∫ s r ′ d u = e u cos u + ∫ e u sin u d u ∴ ∫ e u sin u d u = e u sin u − ∫ e u cos d u = e u sin u − e u cos u − ∫ e u sin u d u 2 ∫ e u sin u d u = e u sin u − e u cos u + C ∫ e u sin u d u = 1 2 ( e u sin u − e u cos u ) + C ∴ ∫ sin ( ln 2 x ) d x = 1 2 ∫ e u sin u d u = 1 4 ( e u sin u − e u cos u ) + C = 1 4 ( 2 x sin ( ln 2 x ) − 2 x cos ( ln 2 x ) ) + C = 1 2 x ( sin ( ln 2 x ) − cos ( ln 2 x ) ) + C \begin{darray}{cc}
u = \ln 2x &\implies& \dd u = \frac{1}{x}\dd x
\\
&\iff& \dd x = x\dd u
\\
&\iff& e^u = 2x
\\
&\iff& x = \frac{e^u}{2}
\end{darray}
\\
\begin{align*}
\int\sin(\ln2x)\dd x &= \int\sin(u)\frac{e^u}{2}\dd u
\\
&= \frac{1}{2}\int e^u\sin u\dd u
\end{align*}
\\
\begin{darray}{cc}
p = \sin u &\implies& p' = \cos u
\\
q' = e^u &\implies& q = e^u
\end{darray}
\\
\begin{align*}
\int e^u\sin u\dd u &= pq - \int qp'\dd u
\\
&= e^u\sin u - \int e^u\cos u \dd u
\end{align*}
\\
\begin{darray}{cc}
r = \cos u &\implies& r' = -\sin u
\\
s' = e^u &\implies& s = e^u
\end{darray}
\\
\begin{align*}
\int e^u\cos u\dd u &= rs - \int sr'\dd u
\\
&= e^u\cos u + \int e^u\sin u\dd u
\end{align*}
\\
\begin{align*}
\therefore \int e^u\sin u\dd u
&= e^u \sin u - \int e^u\cos\dd u
\\
&= e^u \sin u - e^u\cos u - \int e^u\sin u \dd u
\\
2\int e^u\sin u\dd u &= e^u\sin u - e^u\cos u + C
\\
\int e^u\sin u\dd u &= \frac{1}{2}(e^u\sin u - e^u\cos u) + C
\end{align*}
\\
\begin{align*}
\therefore
\int\sin(\ln2x)\dd x &= \frac{1}{2}\int e^u\sin u\dd u
\\
&= \frac{1}{4}(e^u\sin u - e^u\cos u) + C
\\
&= \frac{1}{4}(2x\sin(\ln2x) - 2x\cos(\ln2x)) + C
\\
&= \frac{1}{2}x(\sin(\ln2x) - \cos(\ln2x)) + C
\end{align*} u = ln 2 x ⟹ ⟺ ⟺ ⟺ d u = x 1 d x d x = x d u e u = 2 x x = 2 e u ∫ sin ( ln 2 x ) d x = ∫ sin ( u ) 2 e u d u = 2 1 ∫ e u sin u d u p = sin u q ′ = e u ⟹ ⟹ p ′ = cos u q = e u ∫ e u sin u d u = pq − ∫ q p ′ d u = e u sin u − ∫ e u cos u d u r = cos u s ′ = e u ⟹ ⟹ r ′ = − sin u s = e u ∫ e u cos u d u = rs − ∫ s r ′ d u = e u cos u + ∫ e u sin u d u ∴ ∫ e u sin u d u 2 ∫ e u sin u d u ∫ e u sin u d u = e u sin u − ∫ e u cos d u = e u sin u − e u cos u − ∫ e u sin u d u = e u sin u − e u cos u + C = 2 1 ( e u sin u − e u cos u ) + C ∴ ∫ sin ( ln 2 x ) d x = 2 1 ∫ e u sin u d u = 4 1 ( e u sin u − e u cos u ) + C = 4 1 ( 2 x sin ( ln 2 x ) − 2 x cos ( ln 2 x )) + C = 2 1 x ( sin ( ln 2 x ) − cos ( ln 2 x )) + C
u = ln 2 x ⟹ u ′ = 2 ln x x v ′ = 1 ⟹ v = x ∫ ( ln x ) 2 d x = u v − ∫ v u ′ d x = x ln 2 x − ∫ 2 x ln x x d x = x ln 2 x − 2 ∫ ln x d x p = ln x ⟹ p ′ = 1 x q ′ = 1 ⟹ q = x ∫ ln x d x = p q − ∫ q p ′ d x = x ln x − ∫ x x d x = x ln x − x + C ∫ ( ln x ) 2 d x = x ln 2 x − 2 ∫ ln x d x = x ln 2 ( x ) − 2 ( x ln ( x ) − x ) + C = x ln 2 ( x ) − 2 x ln ( x ) + 2 x + C = x ( ln 2 ( x ) − 2 ln ( x ) + 2 ) + C \begin{darray}{cc}
u = \ln^2 x &\implies& u' = \frac{2\ln x}{x}
\\
v' = 1 &\implies& v = x
\end{darray}
\\
\begin{align*}
\int(\ln x)^2\dd x &= uv - \int vu'\dd x
\\
&= x\ln^2 x - \int\frac{2\cancel{x}\ln x}{\cancel{x}}\dd x
\\
&= x\ln^2 x - 2\int\ln x\dd x
\end{align*}
\\
\begin{darray}{cc}
p = \ln x &\implies& p' = \frac{1}{x}
\\
q' = 1 &\implies& q = x
\end{darray}
\\
\begin{align*}
\int\ln x\dd x &= pq - \int qp'\dd x
\\
&= x\ln x - \int\frac{x}{x}\dd x
\\
&= x\ln x - x + C
\end{align*}
\\
\begin{align*}
\int(\ln x)^2\dd x &= x\ln^2x - 2\int\ln x\dd x
\\
&= x\ln^2(x) - 2(x\ln(x) - x) + C
\\
&= x\ln^2(x) - 2x\ln(x) + 2x + C
\\
&= x(\ln^2(x) - 2\ln(x) + 2) + C
\end{align*} u = ln 2 x v ′ = 1 ⟹ ⟹ u ′ = x 2 ln x v = x ∫ ( ln x ) 2 d x = uv − ∫ v u ′ d x = x ln 2 x − ∫ x 2 x ln x d x = x ln 2 x − 2 ∫ ln x d x p = ln x q ′ = 1 ⟹ ⟹ p ′ = x 1 q = x ∫ ln x d x = pq − ∫ q p ′ d x = x ln x − ∫ x x d x = x ln x − x + C ∫ ( ln x ) 2 d x = x ln 2 x − 2 ∫ ln x d x = x ln 2 ( x ) − 2 ( x ln ( x ) − x ) + C = x ln 2 ( x ) − 2 x ln ( x ) + 2 x + C = x ( ln 2 ( x ) − 2 ln ( x ) + 2 ) + C
u = sin − 1 x ⟹ u ′ = 1 1 − x 2 v ′ = 1 ⟹ v = x ∫ sin − 1 d x = u v − ∫ v u ′ d x = x sin − 1 ( x ) − ∫ x 1 − x 2 d x p = 1 − x 2 ⟹ d p = − 2 x d x ⟺ d x = − 1 2 x d p ∫ x 1 − x 2 d x = ∫ x p ( − 1 2 x d p ) = − 1 2 ∫ 1 p d p = − 1 2 ∫ p − 1 / 2 d p = − 1 2 ⋅ p 1 / 2 1 / 2 + C = − p + C = − 1 − x 2 + C ∴ ∫ sin − 1 d x = x sin − 1 ( x ) − ∫ x 1 − x 2 d x = x sin − 1 ( x ) − ( − 1 − x 2 ) + C = 1 − x 2 + x sin − 1 ( x ) + C \begin{darray}{cc}
u = \sin^{-1}x &\implies& u' = \frac{1}{\sqrt{1-x^2}}
\\
v' = 1 &\implies& v = x
\end{darray}
\\
\begin{align*}
\int\sin^{-1}\dd x &= uv - \int vu'\dd x
\\
&= x\sin^{-1}(x) - \int \frac{x}{\sqrt{1-x^2}}\dd x
\end{align*}
\\
\begin{darray}{cc}
p = 1-x^2 &\implies& \dd p = -2x\dd x
\\
&\iff& \dd x = -\frac{1}{2x}\dd p
\end{darray}
\\
\begin{align*}
\int\frac{x}{\sqrt{1-x^2}}\dd x
&= \int\frac{\cancel{x}}{\sqrt{p}}\(-\frac{1}{2\cancel{x}}\dd p\)
\\
&= -\frac{1}{2}\int\frac{1}{\sqrt{p}}\dd p
\\
&= -\frac{1}{2}\int p^{-1/2}\dd p
\\
&= -\frac{1}{2}\cdot\frac{p^{1/2}}{1/2} + C
\\
&= -\sqrt{p} + C
\\
&= -\sqrt{1-x^2} + C
\end{align*}
\\
\begin{align*}
\therefore \int\sin^{-1}\dd x
&= x\sin^{-1}(x) - \int\frac{x}{\sqrt{1-x^2}}\dd x
\\
&= x\sin^{-1}(x) - (-\sqrt{1-x^2}) + C
\\
&= \sqrt{1-x^2} + x\sin^{-1}(x) + C
\end{align*} u = sin − 1 x v ′ = 1 ⟹ ⟹ u ′ = 1 − x 2 1 v = x ∫ sin − 1 d x = uv − ∫ v u ′ d x = x sin − 1 ( x ) − ∫ 1 − x 2 x d x p = 1 − x 2 ⟹ ⟺ d p = − 2 x d x d x = − 2 x 1 d p ∫ 1 − x 2 x d x = ∫ p x ( − 2 x 1 d p ) = − 2 1 ∫ p 1 d p = − 2 1 ∫ p − 1/2 d p = − 2 1 ⋅ 1/2 p 1/2 + C = − p + C = − 1 − x 2 + C ∴ ∫ sin − 1 d x = x sin − 1 ( x ) − ∫ 1 − x 2 x d x = x sin − 1 ( x ) − ( − 1 − x 2 ) + C = 1 − x 2 + x sin − 1 ( x ) + C
u = x ⟹ u ′ = 1 v ′ = sec 2 x ⟹ v = tan x ∫ x sec 2 x d x = u v − ∫ v u ′ d x = x tan x − ∫ tan x d x = x tan x − ∫ sin x cos x d x p = cos x ⟹ d p = − sin x d x ⟺ d x = d p − sin x ∫ sin x cos x d x = ∫ sin x p ⋅ d p − sin x = − ∫ 1 p d p = − ln ( p ) + C = − ln ( cos x ) + C ∴ ∫ x sec 2 x d x = x tan x − ∫ sin x cos x d x = x tan x − ( − ln ( cos x ) ) + C = x tan x + ln ( cos x ) + C \begin{darray}{cc}
u = x &\implies& u' = 1
\\
v' = \sec^2x &\implies& v = \tan x
\end{darray}
\\
\begin{align*}
\int x\sec^2x\dd x &= uv - \int vu'\dd x
\\
&= x\tan x - \int\tan x \dd x
\\
&= x\tan x - \int\frac{\sin x}{\cos x}\dd x
\end{align*}
\\
\begin{darray}{cc}
p = \cos x &\implies& \dd p = -\sin x\dd x
\\
&\iff& \dd x = \frac{\dd p}{-\sin x}
\end{darray}
\\
\begin{align*}
\int\frac{\sin x}{\cos x}\dd x
&= \int\frac{\cancel{\sin x}}{p}\cdot\frac{\dd p}
{-\cancel{\sin x}}
\\
&= -\int\frac{1}{p}\dd p
\\
&= -\ln(p) + C
\\
&= -\ln(\cos x) + C
\end{align*}
\\
\begin{align*}
\therefore \int x\sec^2x\dd x
&= x\tan x - \int\frac{\sin x}{\cos x}\dd x
\\
&= x\tan x - (-\ln(\cos x)) + C
\\
&= x\tan x + \ln(\cos x) + C
\end{align*} u = x v ′ = sec 2 x ⟹ ⟹ u ′ = 1 v = tan x ∫ x sec 2 x d x = uv − ∫ v u ′ d x = x tan x − ∫ tan x d x = x tan x − ∫ cos x sin x d x p = cos x ⟹ ⟺ d p = − sin x d x d x = − sin x d p ∫ cos x sin x d x = ∫ p sin x ⋅ − sin x d p = − ∫ p 1 d p = − ln ( p ) + C = − ln ( cos x ) + C ∴ ∫ x sec 2 x d x = x tan x − ∫ cos x sin x d x = x tan x − ( − ln ( cos x )) + C = x tan x + ln ( cos x ) + C
Derive the following formulas using the technique of integration by parts. Assume that n is a positive integer. These formulas are called reduction formulas because the exponent in the x term has been reduced by one in each case. The second integral is simpler than the original integral.
u = x n ⟹ u ′ = n x n − 1 v ′ = cos x ⟹ v = sin x ∫ x n cos x d x = u v − ∫ v u ′ d x = x n sin x − ∫ n x n − 1 sin x d x = x n sin x − n ∫ x n − 1 sin x d x \begin{darray}{cc}
u = x^n &\implies& u' = nx^{n-1}
\\
v' = \cos x &\implies& v = \sin x
\end{darray}
\\
\begin{align*}
\int x^n\cos x\dd x &= uv - \int vu'\dd x
\\
&= x^n\sin x - \int nx^{n-1}\sin x\dd x
\\
&= x^n\sin x -n\int x^{n-1}\sin x\dd x
\end{align*} u = x n v ′ = cos x ⟹ ⟹ u ′ = n x n − 1 v = sin x ∫ x n cos x d x = uv − ∫ v u ′ d x = x n sin x − ∫ n x n − 1 sin x d x = x n sin x − n ∫ x n − 1 sin x d x
Since x cos x ≥ 0 x\cos x \ge 0 x cos x ≥ 0 for all x ∈ [ 11 π 2 , 13 π 2 ] x\in[\frac{11\pi}{2}, \frac{13\pi}{2}] x ∈ [ 2 11 π , 2 13 π ] , the area A A A between the curve y = x cos x y=x\cos x y = x cos x and the x-axis is
∫ 11 π / 2 13 π / 2 x cos x d x . \int_{11\pi/2}^{13\pi/2} x\cos x\dd x. ∫ 11 π /2 13 π /2 x cos x d x .
u = x ⟹ u ′ = 1 v ′ = cos x ⟹ v = sin x ∫ 11 π / 2 13 π / 2 x cos x d x = [ x sin x ] 11 π / 2 13 π / 2 − ∫ 11 π / 2 13 π / 2 sin x d x = [ x sin x ] 11 π / 2 13 π / 2 − [ − cos x ] 11 π / 2 13 π / 2 = 13 π 2 − 11 π 2 ( − 1 ) − 0 = 12 π \begin{darray}{cc}
u = x &\implies& u' = 1
\\
v' = \cos x &\implies& v = \sin x
\end{darray}
\\
\begin{align*}
\int_{11\pi/2}^{13\pi/2} x\cos x\dd x
&= \bigg[x\sin x\bigg]_{11\pi/2}^{13\pi/2}
- \int_{11\pi/2}^{13\pi/2} \sin x\dd x
\\
&= \bigg[x\sin x\bigg]_{11\pi/2}^{13\pi/2}
- \bigg[-\cos x\bigg]_{11\pi/2}^{13\pi/2}
\\
&= \frac{13\pi}{2}-\frac{11\pi}{2}(-1) - 0
\\
&= 12\pi
\end{align*} u = x v ′ = cos x ⟹ ⟹ u ′ = 1 v = sin x ∫ 11 π /2 13 π /2 x cos x d x = [ x sin x ] 11 π /2 13 π /2 − ∫ 11 π /2 13 π /2 sin x d x = [ x sin x ] 11 π /2 13 π /2 − [ − cos x ] 11 π /2 13 π /2 = 2 13 π − 2 11 π ( − 1 ) − 0 = 12 π
Since y = ln x y=\ln x y = ln x is increasing and ln x = 0 ⟹ x = 1 \ln x = 0 \implies x = 1 ln x = 0 ⟹ x = 1 , and the region is bounded by x = e 2 x=e^2 x = e 2 , we have that the volume V V V of the solid generated by revolving the region around the x-axis is
V = π ∫ 1 e 2 ln 2 ( x ) − 0 2 d x = π ∫ 1 e 2 ln 2 ( x ) d x \begin{align*}
V &= \pi \int_1^{e^2} \ln^2(x) - 0^2\dd x
\\
&= \pi \int_1^{e^2} \ln^2(x)\dd x
\end{align*} V = π ∫ 1 e 2 ln 2 ( x ) − 0 2 d x = π ∫ 1 e 2 ln 2 ( x ) d x
From (25), we found ∫ ln 2 x d x \int\ln^2 x\dd x ∫ ln 2 x d x .
∫ ln 2 x d x = x ( ln 2 ( x ) − 2 ln ( x ) + 2 ) + C \int \ln^2 x \dd x = x(\ln^2(x) - 2\ln(x) + 2) + C ∫ ln 2 x d x = x ( ln 2 ( x ) − 2 ln ( x ) + 2 ) + C
Therefore:
V = π ∫ 1 e 2 ln 2 x d x = π [ x ( ln 2 ( x ) − 2 ln ( x ) + 2 ) ] 1 e 2 = π ( e 2 ( 4 − 4 + 2 ) − ( 2 ) ) = π ( 2 e 2 − 2 ) = 2 π ( e 2 − 1 ) . \begin{align*}
V &= \pi \int_1^{e^2} \ln^2 x\dd x
\\
&= \pi \bigg[x(\ln^2(x) - 2\ln(x) + 2)\bigg]_1^{e^2}
\\
&= \pi (e^2(4-4+2)- (2))
\\
&= \pi(2e^2 - 2)
\\
&= 2\pi(e^2 - 1).
\end{align*} V = π ∫ 1 e 2 ln 2 x d x = π [ x ( ln 2 ( x ) − 2 ln ( x ) + 2 ) ] 1 e 2 = π ( e 2 ( 4 − 4 + 2 ) − ( 2 )) = π ( 2 e 2 − 2 ) = 2 π ( e 2 − 1 ) .