Homework 7

% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2em}

Mos Kullathon
921425216

Section 3.4

Express the rational function as a sum or difference of two simpler rational expressions.

(183) x2+1x(x+1)(x+2)\displaystyle\frac{x^2+1}{x(x+1)(x+2)}

x2+1x(x+1)(x+2)=Ax+Bx+1+Cx+2;A,B,CRx2+1=A(x+1)(x+2)+Bx(x+2)+Cx(x+1)\begin{align*} \frac{x^2+1}{x(x+1)(x+2)} &= \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2};\quad A,B,C\in\R \\ x^2 + 1 &= A(x+1)(x+2) + Bx(x+2) + Cx(x+1) \end{align*}

Let x=0x=0.

02+1=A(0+1)(0+2)1=2AA=120^2 + 1 = A(0+1)(0+2) \\ 1 = 2A \\ \therefore A = \frac{1}{2}

Let x=1x = -1.

(1)2+1=B(1)(1+2)2=BB=2(-1)^2 + 1 = B(-1)(-1+2) \\ 2 = -B \\ \therefore B = -2

Let x=2x = -2.

(2)2+1=C(2)(2+1)5=2CC=52(-2)^2 + 1 = C(-2)(-2+1) \\ 5 = 2C \\ \therefore C = \frac{5}{2}

x2+1x(x+1)(x+2)=12x2x+1+52(x+2)\therefore \frac{x^2+1}{x(x+1)(x+2)} = \frac{1}{2x} -\frac{2}{x+1} +\frac{5}{2(x+2)}

(185) 3x+1x2\displaystyle\frac{3x+1}{x^2}

3x+1x2=Ax+Bx2;A,BR3x+1=Ax+B\begin{align*} \frac{3x+1}{x^2} &= \frac{A}{x} + \frac{B}{x^2};\quad A,B\in\R \\ 3x+1 &= Ax + B \end{align*}

By comparing coefficients, A=3,B=1A = 3, B= 1.

3x+1x2=3x+1x2\therefore\frac{3x+1}{x^2} = \frac{3}{x} + \frac{1}{x^2}

(187) 2x4x22x\displaystyle\frac{2x^4}{x^2-2x}

x22x      2x2+4x+8(x22x)(2x4x22x      2x44x3x22x      2x44x3x22x      2x44x38x2x22x      2x44x38x2x22x      2x44x38x216xx22x      2x44x38x216x\gdef\longdiv#1#2{ \mathstrut#1\kern.25em\smash{\raisebox.3ex\hbox{)\kern.1em}} \mkern-8mu\overline{\enspace\mathstrut#2} } \def\arraystretch{1em} \begin{array}{l} \phantom{x^2-2x\;\;\;} 2x^2+4x+8 \\ \longdiv{x^2-2x}{2x^4} \\ \phantom{x^2-2x\;\;\;} \underline{2x^4-4x^3} \\ \phantom{x^2-2x\;\;\;2x^4-} 4x^3 \\ \phantom{x^2-2x\;\;\;2x^4-} \underline{4x^3-8x^2} \\ \phantom{x^2-2x\;\;\;2x^4-4x^3-} 8x^2 \\ \phantom{x^2-2x\;\;\;2x^4-4x^3-} \underline{8x^2-16x} \\ \phantom{x^2-2x\;\;\;2x^4-4x^3-8x^2-} 16x \\ \end{array}

2x4x22x=2x2+4x+8+16xx22x=2x2+4x+8+16xx(x2)=2x2+4x+8+16x2\begin{align*} \therefore \frac{2x^4}{x^2-2x} &= 2x^2+4x+8+\frac{16x}{x^2-2x} \\ &= 2x^2+4x+8+\frac{16x}{x(x-2)} \\ &= 2x^2+4x+8+\frac{16}{x-2} \end{align*}

(189) 1x2(x1)\displaystyle\frac{1}{x^2(x-1)}

1x2(x1)=Ax+Bx2+Cx1;A,B,CR1=Ax(x1)+B(x1)+Cx2\begin{align*} \frac{1}{x^2(x-1)} &= \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1};\quad A,B,C\in\R \\ 1 &= Ax(x-1) + B(x-1) + Cx^2 \end{align*}

Let x=0x=0.

1=B(01)1=BB=11 = B(0-1) \\ 1 = -B \\ \therefore B = -1

Let x=1x=1.

1=C(12)C=11 = C(1^2) \\ \therefore C = 1

Let x=2x=2 and substitute B=1,C=1B=-1, C=1.

1=A(2)(21)(21)+(22)1=2A1+4A=11 = A(2)(2-1) -(2-1) + (2^2) \\ 1 = 2A-1+4 \\ \therefore A = -1

1x2(x1)=1x1x2+1x1\therefore\frac{1}{x^2(x-1)} = -\frac{1}{x}-\frac{1}{x^2}+\frac{1}{x-1}

(192) 1x41=1(x+1)(x1)(x2+1)\displaystyle\frac{1}{x^4-1} = \frac{1}{(x+1)(x-1)(x^2+1)}

1(x+1)(x1)(x2+1)=Ax+1+Bx1+Cx2+1;A,B,CR1=A(x1)(x2+1)+B(x+1)(x2+1)+C(x+1)(x1)\begin{align*} \frac{1}{(x+1)(x-1)(x^2+1)} &= \frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{x^2+1};\quad A,B,C\in\R \\ 1 &= A(x-1)(x^2+1) + B(x+1)(x^2+1) + C(x+1)(x-1) \end{align*}

Let x=1x=-1.

1=A(11)(12+1)1=4AA=141 = A(-1-1)(-1^2+1) \\ 1 = -4A \\ \therefore A =-\frac{1}{4}

Let x=1x=1.

1=B(1+1)(12+1)1=4BB=141 = B(1+1)(1^2+1) \\ 1 = 4B \\ \therefore B = \frac{1}{4}

Let x=0x=0 and substitute A=14,B=14A=-\frac{1}{4},B=\frac{1}{4}.

1=A(01)(02+1)+B(0+1)(02+1)+C(0+1)(01)1=A+BC1=14+14C12=CC=121 = A(0-1)(0^2+1) + B(0+1)(0^2+1) + C(0+1)(0-1) \\ 1 = -A+B-C \\ 1 = \frac{1}{4}+\frac{1}{4}-C \\ \frac{1}{2} = -C \\ \therefore C = -\frac{1}{2}

1x41=1(x+1)(x1)(x2+1)=14(x+1)+14(x1)12(x2+1)\begin{align*} \therefore \frac{1}{x^4-1} &= \frac{1}{(x+1)(x-1)(x^2+1)} \\ &= -\frac{1}{4(x+1)} + \frac{1}{4(x-1)} - \frac{1}{2(x^2 + 1)} \end{align*}

Section 3.7

Determine whether the improper integrals converge or diverge. If possible, determine the value of the integrals that converge.

(359) 1x2+1 ⁣dx\displaystyle\int_{-\infty}^\infty\frac{1}{x^2+1}\dd x

1x2+1 ⁣dx=01x2+1 ⁣dx+01x2+1 ⁣dx\int_{-\infty}^\infty\frac{1}{x^2+1}\dd x = \int_{-\infty}^0\frac{1}{x^2+1}\dd x + \int_{0}^\infty\frac{1}{x^2+1}\dd x

01x2+1 ⁣dx=limnn01x2+1 ⁣dx=limn[tan1x]n0=limntan1n=π201x2+1 ⁣dx=limn0n1x2+1 ⁣dx=limn[tan1x]0n=limntan1n=π21x2+1 ⁣dx=01x2+1 ⁣dx+01x2+1 ⁣dx=π2+π2=π\begin{align*} \int_{-\infty}^0\frac{1}{x^2+1}\dd x &= \lim_{n\to-\infty}\int_{n}^0\frac{1}{x^2+1}\dd x \\ &= \lim_{n\to-\infty}\bigg[\tan^{-1}x\bigg]_n^0 \\ &= \lim_{n\to-\infty}-\tan^{-1}n \\ &= \frac{\pi}{2} \\ \int_{0}^\infty\frac{1}{x^2+1}\dd x &= \lim_{n\to\infty}\int_0^n\frac{1}{x^2+1}\dd x \\ &= \lim_{n\to\infty}\bigg[\tan^{-1}x\bigg]_0^n \\ &= \lim_{n\to\infty}\tan^{-1}n \\ &= \frac{\pi}{2} \end{align*} \\ \begin{align*} \therefore \int_{-\infty}^\infty\frac{1}{x^2+1}\dd x &= \int_{-\infty}^0\frac{1}{x^2+1}\dd x + \int_{0}^\infty\frac{1}{x^2+1}\dd x \\ &= \frac{\pi}{2} + \frac{\pi}{2} \\ &= \pi \end{align*}

(362) 0ex ⁣dx\displaystyle\int_0^\infty e^{-x}\dd x

0ex ⁣dx=limn0nex ⁣dx=limn[ex]0n=limnen(e0)=limn1en+limn1=0+1=1\begin{align*} \int_0^\infty e^{-x}\dd x &= \lim_{n\to\infty} \int_0^n e^{-x}\dd x \\ &= \lim_{n\to\infty} \bigg[-e^{-x}\bigg]_0^n \\ &= \lim_{n\to\infty} -e^{-n}-(-e^0) \\ &= \lim_{n\to\infty} -\frac{1}{e^n} + \lim_{n\to\infty} 1 \\ &= 0+1 \\ &= 1 \end{align*}

(365) 01 ⁣dxx3\displaystyle\int_0^1\frac{\dd x}{\sqrt[3]{x}}

01 ⁣dxx3=limn0n1x13 ⁣dx=limn0[x232/3]n1=limn0[3x2/32]n1=limn03(1)2/323n2/32=32\begin{align*} \int_0^1\frac{\dd x}{\sqrt[3]{x}} &= \lim_{n\to0}\int_n^1x^{-\frac{1}{3}}\dd x \\ &= \lim_{n\to0}\bigg[\frac{x^\frac{2}{3}}{2/3}\bigg]_n^1 \\ &= \lim_{n\to0}\bigg[\frac{3x^{2/3}}{2}\bigg]_n^1 \\ &= \lim_{n\to0}\frac{3(1)^{2/3}}{2} - \frac{3n^{2/3}}{2} \\ &= \frac{3}{2} \end{align*}

Evaluate the integrals. If the integral diverges, answer “diverges.”

(374) 1 ⁣dxxe\displaystyle\int_1^\infty\frac{\dd x}{x^e}

1 ⁣dxxe=limn1nxe ⁣dx=limn[x1e1e]1n=limnn1e1e11e1e=limn11e(ne1)11e1e=011e=1e1\begin{align*} \int_1^\infty\frac{\dd x}{x^e} &= \lim_{n\to\infty} \int_1^n x^{-e} \dd x \\ &= \lim_{n\to\infty} \bigg[\frac{x^{1-e}}{1-e}\bigg]_1^n \\ &= \lim_{n\to\infty} \frac{n^{1-e}}{1-e} - \frac{1^{1-e}}{1-e}\\ &= \lim_{n\to\infty} \frac{1}{1-e(n^{e-1})} - \frac{1^{1-e}}{1-e}\\ &= 0 - \frac{1}{1-e} \\ &= \frac{1}{e-1} \end{align*}

(375) 01 ⁣dxxπ\displaystyle\int_0^1\frac{\dd x}{x^\pi}

01 ⁣dxxπ=limn0n1xπ ⁣dx=limn0[x1π1π]n1=limn011π01π1π=\begin{align*} \int_0^1\frac{\dd x}{x^\pi} &= \lim_{n\to0}\int_n^1 x^{-\pi} \dd x\\ &= \lim_{n\to0}\bigg[\frac{x^{1-\pi}}{1-\pi}\bigg]_n^1 \\ &= \lim_{n\to0}\frac{1}{1-\pi} - \frac{0^{1-\pi}}{1-\pi} \\ &= \infty \end{align*}

Therefore, 01 ⁣dxxπ\displaystyle\int_0^1\frac{\dd x}{x^\pi} diverges.

(382) 0xex ⁣dx\displaystyle\int_0^\infty xe^{-x}\dd x

0xex ⁣dx=limn0nxex ⁣dxu=x    u=1v=ex    v=ex0nxex ⁣dx=[uv]0n0nvu ⁣dx=[xex]0n+0nex ⁣dx=nen+[ex]0n=nenen+1=nen1en+1\int_0^\infty xe^{-x}\dd x = \lim_{n\to\infty}\int_0^n xe^{-x}\dd x \\ \begin{darray}{cc} u = x \implies u' = 1 \\ v' = e^{-x} \implies v = -e^{-x} \end{darray} \\ \begin{align*} \int_0^n xe^{-x}\dd x &= \bigg[uv\bigg]_0^n - \int_0^n vu'\dd x \\ &= \bigg[-xe^{-x}\bigg]_0^n + \int_0^n e^{-x}\dd x \\ &= -ne^{-n} + \bigg[-e^{-x}\bigg]_0^n \\ &= -ne^{-n} -e^{-n} + 1 \\ &= -\frac{n}{e^n} - \frac{1}{e^n} + 1 \end{align*}

By L’Hôpital’s:

limnnen=limn1en=0.\lim_{n\to\infty}-\frac{n}{e^n} = \lim_{n\to\infty}-\frac{1}{e^n} = 0.

0xex ⁣dx=limnnen1en+1=00+1=1\begin{align*} \therefore \int_0^\infty xe^{-x}\dd x &= \lim_{n\to\infty} -\frac{n}{e^n} - \frac{1}{e^n} + 1 \\ &= -0-0+1 \\ &= 1 \end{align*}

(394) Find the area of the region in the first quadrant between the curve y=e6xy=e^{-6x} and the x-axis.

A=0e6x ⁣dx=limn0ne6x ⁣dx=limn[e6x6]0n=limne6n6+16=0+16=16\begin{align*} A &= \int_0^\infty e^{-6x}\dd x \\ &= \lim_{n\to\infty}\int_0^n e^{-6x}\dd x \\ &= \lim_{n\to\infty}\bigg[-\frac{e^{-6x}}{6}\bigg]_0^n \\ &= \lim_{n\to\infty} -\frac{e^{-6n}}{6} + \frac{1}{6} \\ &= -0+\frac{1}{6} \\ &= \frac{1}{6} \end{align*}