Mos Kullathon
921425216
Express the rational function as a sum or difference of two simpler rational expressions.
x(x+1)(x+2)x2+1x2+1=xA+x+1B+x+2C;A,B,C∈R=A(x+1)(x+2)+Bx(x+2)+Cx(x+1)
Let x=0.
02+1=A(0+1)(0+2)1=2A∴A=21
Let x=−1.
(−1)2+1=B(−1)(−1+2)2=−B∴B=−2
Let x=−2.
(−2)2+1=C(−2)(−2+1)5=2C∴C=25
∴x(x+1)(x+2)x2+1=2x1−x+12+2(x+2)5
x23x+13x+1=xA+x2B;A,B∈R=Ax+B
By comparing coefficients, A=3,B=1.
∴x23x+1=x3+x21
x2−2x2x2+4x+8(x2−2x)(2x4x2−2x2x4−4x3x2−2x2x4−4x3x2−2x2x4−4x3−8x2x2−2x2x4−4x3−8x2x2−2x2x4−4x3−8x2−16xx2−2x2x4−4x3−8x2−16x
∴x2−2x2x4=2x2+4x+8+x2−2x16x=2x2+4x+8+x(x−2)16x=2x2+4x+8+x−216
x2(x−1)11=xA+x2B+x−1C;A,B,C∈R=Ax(x−1)+B(x−1)+Cx2
Let x=0.
1=B(0−1)1=−B∴B=−1
Let x=1.
1=C(12)∴C=1
Let x=2 and substitute B=−1,C=1.
1=A(2)(2−1)−(2−1)+(22)1=2A−1+4∴A=−1
∴x2(x−1)1=−x1−x21+x−11
(x+1)(x−1)(x2+1)11=x+1A+x−1B+x2+1C;A,B,C∈R=A(x−1)(x2+1)+B(x+1)(x2+1)+C(x+1)(x−1)
Let x=−1.
1=A(−1−1)(−12+1)1=−4A∴A=−41
Let x=1.
1=B(1+1)(12+1)1=4B∴B=41
Let x=0 and substitute A=−41,B=41.
1=A(0−1)(02+1)+B(0+1)(02+1)+C(0+1)(0−1)1=−A+B−C1=41+41−C21=−C∴C=−21
∴x4−11=(x+1)(x−1)(x2+1)1=−4(x+1)1+4(x−1)1−2(x2+1)1
Determine whether the improper integrals converge or diverge. If possible, determine the value of the integrals that converge.
∫−∞∞x2+11dx=∫−∞0x2+11dx+∫0∞x2+11dx
∫−∞0x2+11dx∫0∞x2+11dx=n→−∞lim∫n0x2+11dx=n→−∞lim[tan−1x]n0=n→−∞lim−tan−1n=2π=n→∞lim∫0nx2+11dx=n→∞lim[tan−1x]0n=n→∞limtan−1n=2π∴∫−∞∞x2+11dx=∫−∞0x2+11dx+∫0∞x2+11dx=2π+2π=π
∫0∞e−xdx=n→∞lim∫0ne−xdx=n→∞lim[−e−x]0n=n→∞lim−e−n−(−e0)=n→∞lim−en1+n→∞lim1=0+1=1
∫013xdx=n→0lim∫n1x−31dx=n→0lim[2/3x32]n1=n→0lim[23x2/3]n1=n→0lim23(1)2/3−23n2/3=23
Evaluate the integrals. If the integral diverges, answer “diverges.”
∫1∞xedx=n→∞lim∫1nx−edx=n→∞lim[1−ex1−e]1n=n→∞lim1−en1−e−1−e11−e=n→∞lim1−e(ne−1)1−1−e11−e=0−1−e1=e−11
∫01xπdx=n→0lim∫n1x−πdx=n→0lim[1−πx1−π]n1=n→0lim1−π1−1−π01−π=∞
Therefore, ∫01xπdx diverges.
∫0∞xe−xdx=n→∞lim∫0nxe−xdxu=x⟹u′=1v′=e−x⟹v=−e−x∫0nxe−xdx=[uv]0n−∫0nvu′dx=[−xe−x]0n+∫0ne−xdx=−ne−n+[−e−x]0n=−ne−n−e−n+1=−enn−en1+1
By L’Hôpital’s:
n→∞lim−enn=n→∞lim−en1=0.
∴∫0∞xe−xdx=n→∞lim−enn−en1+1=−0−0+1=1
(394) Find the area of the region in the first quadrant between the curve y=e−6x and the x-axis.
A=∫0∞e−6xdx=n→∞lim∫0ne−6xdx=n→∞lim[−6e−6x]0n=n→∞lim−6e−6n+61=−0+61=61