% Differentials d[something]/d[something]
\gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}}
% Shortcut for dy/dx
\gdef\dydx{\diff{y}{x}}
% Differential letter "d" with a thin space before it
\gdef\dd{\mathop{}\!\mathrm{d}}
% Shortcut for not implies
\gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;}
% Shortcuts for extended brackets
\gdef\({\left(} \gdef\){\right)}
\gdef\[{\left[} \gdef\]{\right]}
% Shortcut for real number symbol
\gdef\R{\mathbb{R}}
% More spacing between lines in arrays (override by using \[5em])
Mos Kullathon
921425216
By squeeze theorem:
lim n → ∞ − 1 n ≤ lim n → ∞ ( − 1 ) n 3 n ≤ lim n → ∞ 1 n 0 ≤ lim n → ∞ ( − 1 ) n 3 n ≤ 0 ∴ lim n → ∞ ( − 1 ) n 3 n = 0. \lim_{n\to\infty}-\frac{1}{n} \le
\lim_{n\to\infty}\frac{(-1)^{n^3}}{n} \le
\lim_{n\to\infty}\frac{1}{n} \\
0 \le
\lim_{n\to\infty}\frac{(-1)^{n^3}}{n} \le
0 \\
\therefore \lim_{n\to\infty}\frac{(-1)^{n^3}}{n}=0. n → ∞ lim − n 1 ≤ n → ∞ lim n ( − 1 ) n 3 ≤ n → ∞ lim n 1 0 ≤ n → ∞ lim n ( − 1 ) n 3 ≤ 0 ∴ n → ∞ lim n ( − 1 ) n 3 = 0.
deg ( n 2 + 1 ) > deg ( n + 100 ) ∴ lim n → ∞ n 2 + 1 n + 100 = ∞ \deg(n^2+1) > \deg(n+100)
\\
\therefore \lim_{n\to\infty}\frac{n^2+1}{n+100} = \infty deg ( n 2 + 1 ) > deg ( n + 100 ) ∴ n → ∞ lim n + 100 n 2 + 1 = ∞
lim n → ∞ ( 1 5 e ) n = lim n → ∞ 1 n 5 e n = lim n → ∞ 1 n lim n → ∞ 5 e n = 0 \lim_{n\to\infty}\(\frac{1}{5e}\)^n
= \lim_{n\to\infty}\frac{1^n}{5e^n}
= \frac{\displaystyle\lim_{n\to\infty}1^n}{\displaystyle\lim_{n\to\infty}5e^n}
= 0 n → ∞ lim ( 5 e 1 ) n = n → ∞ lim 5 e n 1 n = n → ∞ lim 5 e n n → ∞ lim 1 n = 0
The polynomial n 100 n^{100} n 100 grows slower than the exponential e 0.01 n e^{0.01n} e 0.01 n .
∴ lim n → ∞ n 100 e 0.01 n = 0 \therefore \lim_{n\to\infty}\frac{n^{100}}{e^{0.01n}} = 0 ∴ n → ∞ lim e 0.01 n n 100 = 0
lim n → ∞ ( 1 + 1 n ) ( 2 + cos n 3 n 2 ) = lim n → ∞ ( 1 + 1 n ) ⏟ 1 lim n → ∞ ( 2 + cos n 3 n 2 ) = lim n → ∞ 2 + lim n → ∞ cos n 3 n 2 \begin{align*}
&\lim_{n\to\infty}\(1+\frac{1}{n}\)
\(2+\frac{\cos n}{3n^2}\)
\\
&= \underbrace{\lim_{n\to\infty}\(1+\frac{1}{n}\)}
_{1}
\lim_{n\to\infty}\(2+\frac{\cos n}{3n^2}\) \\
&=
\lim_{n\to\infty}2+
\lim_{n\to\infty}\frac{\cos n}{3n^2}
\end{align*} n → ∞ lim ( 1 + n 1 ) ( 2 + 3 n 2 cos n ) = 1 n → ∞ lim ( 1 + n 1 ) n → ∞ lim ( 2 + 3 n 2 cos n ) = n → ∞ lim 2 + n → ∞ lim 3 n 2 cos n
By squeeze theorem:
lim n → ∞ − 1 3 n 2 ≤ lim n → ∞ cos n 3 n 2 ≤ lim n → ∞ 1 3 n 2 0 ≤ lim n → ∞ cos n 3 n 2 ≤ 0 ∴ lim n → ∞ cos n 3 n 2 = 0. \lim_{n\to\infty}-\frac{1}{3n^2} \leq
\lim_{n\to\infty}\frac{\cos n}{3n^2} \leq
\lim_{n\to\infty}\frac{1}{3n^2} \\
0 \leq
\lim_{n\to\infty}\frac{\cos n}{3n^2} \leq
0 \\
\therefore \lim_{n\to\infty}\frac{\cos n}{3n^2}=0. n → ∞ lim − 3 n 2 1 ≤ n → ∞ lim 3 n 2 cos n ≤ n → ∞ lim 3 n 2 1 0 ≤ n → ∞ lim 3 n 2 cos n ≤ 0 ∴ n → ∞ lim 3 n 2 cos n = 0.
As such,
lim n → ∞ ( 1 + 1 n ) ( 2 + cos n 3 n 2 ) = lim n → ∞ 2 + 0 = 2. \begin{align*}
&\lim_{n\to\infty}\(1+\frac{1}{n}\)
\(2+\frac{\cos n}{3n^2}\)
\\
&=
\lim_{n\to\infty}2+0 \\
&= 2.
\end{align*} n → ∞ lim ( 1 + n 1 ) ( 2 + 3 n 2 cos n ) = n → ∞ lim 2 + 0 = 2.
lim n → ∞ ln n + 1 n 2 = lim n → ∞ 1 2 ln ( n + 1 ) n 2 = lim n → ∞ 1 2 ( n + 1 ) 2 n = lim n → ∞ 1 4 n ( n + 1 ) = 0 \begin{align*}
\lim_{n\to\infty}\frac{\ln\sqrt{n+1}}{n^2}
&= \lim_{n\to\infty}\frac{\frac{1}{2}\ln(n+1)}{n^2} \\
&= \lim_{n\to\infty}\frac{\frac{1}{2(n+1)}}{2n} \\
&= \lim_{n\to\infty}\frac{1}{4n(n+1)} \\
&= 0
\end{align*} n → ∞ lim n 2 ln n + 1 = n → ∞ lim n 2 2 1 ln ( n + 1 ) = n → ∞ lim 2 n 2 ( n + 1 ) 1 = n → ∞ lim 4 n ( n + 1 ) 1 = 0
n n n^n n n grows faster than n ! n! n ! .
∴ lim n → ∞ n ! n n = 0 \therefore\lim_{n\to\infty}\frac{n!}{n^n} =0 ∴ n → ∞ lim n n n ! = 0
lim n → ∞ 2 1 / n = 2 lim n → ∞ 1 / n = 2 0 = 1 \lim_{n\to\infty}2^{1/n} = 2^{\lim_{n\to\infty}1/n} = 2^0 = 1 n → ∞ lim 2 1/ n = 2 l i m n → ∞ 1/ n = 2 0 = 1
lim n → ∞ 2 n / ( n 2 + 1 ) = 2 lim n → ∞ n / ( n 2 + 1 ) = 2 0 = 1 \lim_{n\to\infty}2^{n/(n^2+1)} = 2^{\lim_{n\to\infty}n/(n^2+1)}
=2^0=1 n → ∞ lim 2 n / ( n 2 + 1 ) = 2 l i m n → ∞ n / ( n 2 + 1 ) = 2 0 = 1
lim n → ∞ n 1 / n = lim n → ∞ e 1 n ln n = e lim n → ∞ ln n n = e 0 = 1 \lim_{n\to\infty}n^{1/n}
= \lim_{n\to\infty} e^{\frac{1}{n}\ln n}
= e^{\lim_{n\to\infty}\frac{\ln n}{n}}
= e^0
= 1 n → ∞ lim n 1/ n = n → ∞ lim e n 1 l n n = e l i m n → ∞ n l n n = e 0 = 1
By squeeze theorem:
lim n → ∞ − 1 ⋅ tan n n 5 − 1 ≤ lim n → ∞ ( − 1 ) n tan n n 5 − 1 ≤ lim n → ∞ 1 ⋅ tan n n 5 − 1 − 1 ( 0 ) ≤ lim n → ∞ ( − 1 ) n tan n n 5 − 1 ≤ 1 ( 0 ) 0 ≤ lim n → ∞ ( − 1 ) n tan n n 5 − 1 ≤ 0 ∴ lim n → ∞ ( − 1 ) n tan n n 5 − 1 = 0. \lim_{n\to\infty}-1\cdot
\tan\frac{n}{n^5-1}
\leq \lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1}
\leq \lim_{n\to\infty}1\cdot\tan\frac{n}{n^5-1}
\\
-1(0) \leq\lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1}\leq 1(0)
\\
0\leq\lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1}\leq 0 \\
\therefore
\lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1} = 0. n → ∞ lim − 1 ⋅ tan n 5 − 1 n ≤ n → ∞ lim ( − 1 ) n tan n 5 − 1 n ≤ n → ∞ lim 1 ⋅ tan n 5 − 1 n − 1 ( 0 ) ≤ n → ∞ lim ( − 1 ) n tan n 5 − 1 n ≤ 1 ( 0 ) 0 ≤ n → ∞ lim ( − 1 ) n tan n 5 − 1 n ≤ 0 ∴ n → ∞ lim ( − 1 ) n tan n 5 − 1 n = 0.
The common ratio r r r is
r = ( 2 5 ) 2 2 5 = ( 2 5 ) 3 ( 2 5 ) 2 = ( 2 5 ) n ( 2 5 ) n − 1 = 2 5 . r=\frac{\(\frac{2}{5}\)^2}{\frac{2}{5}}
=\frac{\(\frac{2}{5}\)^3}{\(\frac{2}{5}\)^2}
=\frac{\(\frac{2}{5}\)^n}{\(\frac{2}{5}\)^{n-1}}
=\frac{2}{5}. r = 5 2 ( 5 2 ) 2 = ( 5 2 ) 2 ( 5 2 ) 3 = ( 5 2 ) n − 1 ( 5 2 ) n = 5 2 .
Since ∣ r ∣ < 1 |r|<1 ∣ r ∣ < 1 , the series converges.
Where the initial term a = 2 5 a=\frac{2}{5} a = 5 2 , using the geometric sum formula yields:
∑ n = 1 ∞ ( 2 5 ) n = 2 5 1 − 2 5 = 2 3 \begin{align*}
\sum_{n=1}^\infty\(\frac{2}{5}\)^n&= \frac{\frac{2}{5}}{1-\frac{2}{5}} \\
&= \frac{2}{3}
\end{align*} n = 1 ∑ ∞ ( 5 2 ) n = 1 − 5 2 5 2 = 3 2
The common ratio r r r is
r = 5 ( − 1 ) 3 7 3 5 ( − 1 ) 2 7 2 = 5 ( − 1 ) 4 7 4 5 ( − 1 ) 3 7 3 = 5 ( − 1 ) n 7 n 5 ( − 1 ) n − 1 7 n − 1 = − 1 7 . r=\frac{\frac{5(-1)^3}{7^3}}{\frac{5(-1)^2}{7^2}}
=\frac{\frac{5(-1)^4}{7^4}}{\frac{5(-1)^3}{7^3}}
=\frac{\frac{5(-1)^n}{7^n}}{\frac{5(-1)^{n-1}}{7^{n-1}}}
=-\frac{1}{7}. r = 7 2 5 ( − 1 ) 2 7 3 5 ( − 1 ) 3 = 7 3 5 ( − 1 ) 3 7 4 5 ( − 1 ) 4 = 7 n − 1 5 ( − 1 ) n − 1 7 n 5 ( − 1 ) n = − 7 1 .
Since ∣ r ∣ < 1 |r|<1 ∣ r ∣ < 1 , the series converges.
Where the initial term a = 5 ( − 1 ) 2 7 2 = 5 49 a=\frac{5(-1)^2}{7^2}=\frac{5}{49} a = 7 2 5 ( − 1 ) 2 = 49 5 , using the geometric sum formula yields:
∑ n = 2 ∞ ( − 1 ) n 5 7 n = 5 49 1 + 1 7 = 5 56 \begin{align*}
\sum_{n=2}^\infty(-1)^n\frac{5}{7^n}
&= \frac{\frac{5}{49}}{1+\frac{1}{7}} \\
&= \frac{5}{56}
\end{align*} n = 2 ∑ ∞ ( − 1 ) n 7 n 5 = 1 + 7 1 49 5 = 56 5
4 + 3 10 + 3 1 0 2 + 3 1 0 3 + ⋯ = 4 + ∑ n = 1 ∞ 3 1 0 n \begin{align*}
&4 + \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \cdots \\
&= 4 + \sum_{n=1}^\infty\frac{3}{10^n}
\end{align*} 4 + 10 3 + 1 0 2 3 + 1 0 3 3 + ⋯ = 4 + n = 1 ∑ ∞ 1 0 n 3
For ∑ n = 1 ∞ 3 1 0 n \displaystyle\sum_{n=1}^\infty\frac{3}{10^n} n = 1 ∑ ∞ 1 0 n 3 :
The common ratio r r r is
r = 3 1 0 2 3 10 = 3 1 0 3 3 1 0 2 = 3 1 0 n 3 1 0 n − 1 = 1 10 r=\frac{\frac{3}{10^2}}{\frac{3}{10}}
=\frac{\frac{3}{10^3}}{\frac{3}{10^2}}
=\frac{\frac{3}{10^n}}{\frac{3}{10^{n-1}}}
=\frac{1}{10} r = 10 3 1 0 2 3 = 1 0 2 3 1 0 3 3 = 1 0 n − 1 3 1 0 n 3 = 10 1
Since ∣ r ∣ < 1 |r|<1 ∣ r ∣ < 1 , the series converges.
Where the initial term a = 3 10 a=\frac{3}{10} a = 10 3 , using the geometric sum formula yields:
∑ n = 1 ∞ 3 1 0 n = 3 10 1 − 1 10 = 1 3 . ∴ 4 + ∑ n = 1 ∞ 3 1 0 n = 4 + 1 3 = 13 3 \begin{align*}
\sum_{n=1}^\infty\frac{3}{10^n}
&= \frac{\frac{3}{10}}{1-\frac{1}{10}} \\
&= \frac{1}{3}. \\
\therefore 4+\sum_{n=1}^\infty\frac{3}{10^n}
&= 4+\frac{1}{3} \\
&= \frac{13}{3}
\end{align*} n = 1 ∑ ∞ 1 0 n 3 ∴ 4 + n = 1 ∑ ∞ 1 0 n 3 = 1 − 10 1 10 3 = 3 1 . = 4 + 3 1 = 3 13
For ∑ n = 1 ∞ ( ln 2 ) n \displaystyle\sum_{n=1}^\infty(\ln2)^n n = 1 ∑ ∞ ( ln 2 ) n :
The common ratio r r r is
r = ln 2 2 ln 2 = ln 3 2 ln 2 2 = ln n 2 ln n − 1 2 = ln 2 ≈ 0.69. r=\frac{\ln^22}{\ln2}=\frac{\ln^32}{\ln^22}
=\frac{\ln^n2}{\ln^{n-1}2} = \ln2 \approx 0.69. r = ln 2 ln 2 2 = ln 2 2 ln 3 2 = ln n − 1 2 ln n 2 = ln 2 ≈ 0.69.
Since ∣ r ∣ < 1 |r|<1 ∣ r ∣ < 1 , the series converges.
Where the initial term a = ln 2 a=\ln2 a = ln 2 , using the geometric sum formula yields:
∑ n = 1 ∞ ( ln 2 ) n = ln 2 1 − ln 2 ≈ 2.26. \begin{align*}
\sum_{n=1}^\infty(\ln2)^n
&= \frac{\ln2}{1-\ln2} \approx 2.26.
\end{align*} n = 1 ∑ ∞ ( ln 2 ) n = 1 − ln 2 ln 2 ≈ 2.26.
For ∑ n = 1 ∞ ( ln 3 ) n \displaystyle\sum_{n=1}^\infty(\ln3)^n n = 1 ∑ ∞ ( ln 3 ) n :
The common ratio r r r is
r = ln 2 3 ln 2 = ln 3 3 ln 2 3 = ln n 3 ln n − 1 3 = ln 3 ≈ 1.10. r=\frac{\ln^23}{\ln2}=\frac{\ln^33}{\ln^23}
=\frac{\ln^n3}{\ln^{n-1}3} = \ln3 \approx 1.10. r = ln 2 ln 2 3 = ln 2 3 ln 3 3 = ln n − 1 3 ln n 3 = ln 3 ≈ 1.10.
Since ∣ r ∣ > 1 |r|>1 ∣ r ∣ > 1 , the series diverges.