% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em])

Homework 8

Mos Kullathon
921425216

1. Find the following limits

a. limn(1)n3n\lim_{n\to\infty}\frac{(-1)^{n^3}}{n}

By squeeze theorem:
limn1nlimn(1)n3nlimn1n0limn(1)n3n0limn(1)n3n=0.\lim_{n\to\infty}-\frac{1}{n} \le \lim_{n\to\infty}\frac{(-1)^{n^3}}{n} \le \lim_{n\to\infty}\frac{1}{n} \\ 0 \le \lim_{n\to\infty}\frac{(-1)^{n^3}}{n} \le 0 \\ \therefore \lim_{n\to\infty}\frac{(-1)^{n^3}}{n}=0.

b. limnn2+1n+100\lim_{n\to\infty}\frac{n^2+1}{n+100}

deg(n2+1)>deg(n+100)limnn2+1n+100=\deg(n^2+1) > \deg(n+100) \\ \therefore \lim_{n\to\infty}\frac{n^2+1}{n+100} = \infty

c. limn(15e)n\lim_{n\to\infty}(\frac{1}{5e})^n

limn(15e)n=limn1n5en=limn1nlimn5en=0\lim_{n\to\infty}\(\frac{1}{5e}\)^n = \lim_{n\to\infty}\frac{1^n}{5e^n} = \frac{\displaystyle\lim_{n\to\infty}1^n}{\displaystyle\lim_{n\to\infty}5e^n} = 0

d. limnn100e0.01n\lim_{n\to\infty}\frac{n^{100}}{e^{0.01n}}

The polynomial n100n^{100} grows slower than the exponential e0.01ne^{0.01n}.

limnn100e0.01n=0\therefore \lim_{n\to\infty}\frac{n^{100}}{e^{0.01n}} = 0

e. limn(1+1n)(2+cosn3n2)\lim_{n\to\infty}(1+\frac{1}{n})(2+\frac{\cos n}{3n^2})

limn(1+1n)(2+cosn3n2)=limn(1+1n)1limn(2+cosn3n2)=limn2+limncosn3n2\begin{align*} &\lim_{n\to\infty}\(1+\frac{1}{n}\) \(2+\frac{\cos n}{3n^2}\) \\ &= \underbrace{\lim_{n\to\infty}\(1+\frac{1}{n}\)} _{1} \lim_{n\to\infty}\(2+\frac{\cos n}{3n^2}\) \\ &= \lim_{n\to\infty}2+ \lim_{n\to\infty}\frac{\cos n}{3n^2} \end{align*}

By squeeze theorem:
limn13n2limncosn3n2limn13n20limncosn3n20limncosn3n2=0.\lim_{n\to\infty}-\frac{1}{3n^2} \leq \lim_{n\to\infty}\frac{\cos n}{3n^2} \leq \lim_{n\to\infty}\frac{1}{3n^2} \\ 0 \leq \lim_{n\to\infty}\frac{\cos n}{3n^2} \leq 0 \\ \therefore \lim_{n\to\infty}\frac{\cos n}{3n^2}=0.

As such,
limn(1+1n)(2+cosn3n2)=limn2+0=2.\begin{align*} &\lim_{n\to\infty}\(1+\frac{1}{n}\) \(2+\frac{\cos n}{3n^2}\) \\ &= \lim_{n\to\infty}2+0 \\ &= 2. \end{align*}

f. limnlnn+1n2\lim_{n\to\infty}\frac{\ln\sqrt{n+1}}{n^2}

limnlnn+1n2=limn12ln(n+1)n2=limn12(n+1)2n=limn14n(n+1)=0\begin{align*} \lim_{n\to\infty}\frac{\ln\sqrt{n+1}}{n^2} &= \lim_{n\to\infty}\frac{\frac{1}{2}\ln(n+1)}{n^2} \\ &= \lim_{n\to\infty}\frac{\frac{1}{2(n+1)}}{2n} \\ &= \lim_{n\to\infty}\frac{1}{4n(n+1)} \\ &= 0 \end{align*}

g. limnn!nn\lim_{n\to\infty}\frac{n!}{n^n}

nnn^n grows faster than n!n!.
limnn!nn=0\therefore\lim_{n\to\infty}\frac{n!}{n^n} =0

h. limn21/n\lim_{n\to\infty}2^{1/n}

limn21/n=2limn1/n=20=1\lim_{n\to\infty}2^{1/n} = 2^{\lim_{n\to\infty}1/n} = 2^0 = 1

i. limn2n/(n2+1)\lim_{n\to\infty}2^{n/(n^2+1)}

limn2n/(n2+1)=2limnn/(n2+1)=20=1\lim_{n\to\infty}2^{n/(n^2+1)} = 2^{\lim_{n\to\infty}n/(n^2+1)} =2^0=1

j. limnn1/n\lim_{n\to\infty}n^{1/n}

limnn1/n=limne1nlnn=elimnlnnn=e0=1\lim_{n\to\infty}n^{1/n} = \lim_{n\to\infty} e^{\frac{1}{n}\ln n} = e^{\lim_{n\to\infty}\frac{\ln n}{n}} = e^0 = 1

k. limn(1)ntannn51\lim_{n\to\infty}(-1)^n \tan\frac{n}{n^5-1}

By squeeze theorem:
limn1tannn51limn(1)ntannn51limn1tannn511(0)limn(1)ntannn511(0)0limn(1)ntannn510limn(1)ntannn51=0.\lim_{n\to\infty}-1\cdot \tan\frac{n}{n^5-1} \leq \lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1} \leq \lim_{n\to\infty}1\cdot\tan\frac{n}{n^5-1} \\ -1(0) \leq\lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1}\leq 1(0) \\ 0\leq\lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1}\leq 0 \\ \therefore \lim_{n\to\infty}(-1)^n\tan\frac{n}{n^5-1} = 0.

2. Evaluate the following infinite series

(i) n=1(25)n\sum_{n=1}^\infty(\frac{2}{5})^n

The common ratio rr is
r=(25)225=(25)3(25)2=(25)n(25)n1=25.r=\frac{\(\frac{2}{5}\)^2}{\frac{2}{5}} =\frac{\(\frac{2}{5}\)^3}{\(\frac{2}{5}\)^2} =\frac{\(\frac{2}{5}\)^n}{\(\frac{2}{5}\)^{n-1}} =\frac{2}{5}.
Since r<1|r|<1, the series converges.

Where the initial term a=25a=\frac{2}{5}, using the geometric sum formula yields:

n=1(25)n=25125=23\begin{align*} \sum_{n=1}^\infty\(\frac{2}{5}\)^n&= \frac{\frac{2}{5}}{1-\frac{2}{5}} \\ &= \frac{2}{3} \end{align*}

(ii) n=2(1)n57n\sum_{n=2}^\infty(-1)^n\frac{5}{7^n}

The common ratio rr is
r=5(1)3735(1)272=5(1)4745(1)373=5(1)n7n5(1)n17n1=17.r=\frac{\frac{5(-1)^3}{7^3}}{\frac{5(-1)^2}{7^2}} =\frac{\frac{5(-1)^4}{7^4}}{\frac{5(-1)^3}{7^3}} =\frac{\frac{5(-1)^n}{7^n}}{\frac{5(-1)^{n-1}}{7^{n-1}}} =-\frac{1}{7}.

Since r<1|r|<1, the series converges.

Where the initial term a=5(1)272=549a=\frac{5(-1)^2}{7^2}=\frac{5}{49}, using the geometric sum formula yields:

n=2(1)n57n=5491+17=556\begin{align*} \sum_{n=2}^\infty(-1)^n\frac{5}{7^n} &= \frac{\frac{5}{49}}{1+\frac{1}{7}} \\ &= \frac{5}{56} \end{align*}

(iii) 4+310+3102+3103+4 + \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \cdots

4+310+3102+3103+=4+n=1310n\begin{align*} &4 + \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \cdots \\ &= 4 + \sum_{n=1}^\infty\frac{3}{10^n} \end{align*}

For n=1310n\displaystyle\sum_{n=1}^\infty\frac{3}{10^n}:

The common ratio rr is
r=3102310=31033102=310n310n1=110r=\frac{\frac{3}{10^2}}{\frac{3}{10}} =\frac{\frac{3}{10^3}}{\frac{3}{10^2}} =\frac{\frac{3}{10^n}}{\frac{3}{10^{n-1}}} =\frac{1}{10}

Since r<1|r|<1, the series converges.

Where the initial term a=310a=\frac{3}{10}, using the geometric sum formula yields:
n=1310n=3101110=13.4+n=1310n=4+13=133\begin{align*} \sum_{n=1}^\infty\frac{3}{10^n} &= \frac{\frac{3}{10}}{1-\frac{1}{10}} \\ &= \frac{1}{3}. \\ \therefore 4+\sum_{n=1}^\infty\frac{3}{10^n} &= 4+\frac{1}{3} \\ &= \frac{13}{3} \end{align*}

(iv) n=1(ln2)n,n=1(ln3)n\sum_{n=1}^\infty(\ln2)^n,\quad\sum_{n=1}^\infty(\ln3)^n (Be careful of the convergence)

For n=1(ln2)n\displaystyle\sum_{n=1}^\infty(\ln2)^n:

The common ratio rr is
r=ln22ln2=ln32ln22=lnn2lnn12=ln20.69.r=\frac{\ln^22}{\ln2}=\frac{\ln^32}{\ln^22} =\frac{\ln^n2}{\ln^{n-1}2} = \ln2 \approx 0.69.

Since r<1|r|<1, the series converges.

Where the initial term a=ln2a=\ln2, using the geometric sum formula yields:
n=1(ln2)n=ln21ln22.26.\begin{align*} \sum_{n=1}^\infty(\ln2)^n &= \frac{\ln2}{1-\ln2} \approx 2.26. \end{align*}

For n=1(ln3)n\displaystyle\sum_{n=1}^\infty(\ln3)^n:

The common ratio rr is
r=ln23ln2=ln33ln23=lnn3lnn13=ln31.10.r=\frac{\ln^23}{\ln2}=\frac{\ln^33}{\ln^23} =\frac{\ln^n3}{\ln^{n-1}3} = \ln3 \approx 1.10.

Since r>1|r|>1, the series diverges.