% Differentials d[something]/d[something] \gdef\diff#1#2{\frac{\mathrm{d}#1}{\mathrm{d}#2}} % Shortcut for dy/dx \gdef\dydx{\diff{y}{x}} % Differential letter "d" with a thin space before it \gdef\dd{\mathop{}\!\mathrm{d}} % Shortcut for not implies \gdef\nimplies{\;\;\;\not\nobreak\!\!\!\!\implies\;} % Shortcuts for extended brackets \gdef\({\left(} \gdef\){\right)} \gdef\[{\left[} \gdef\]{\right]} % Shortcut for real number symbol \gdef\R{\mathbb{R}} % More spacing between lines in arrays (override by using \[5em]) \gdef\arraystretch{2.2em}

Homework 9

Mos Kullathon
921425216

Determine if the following series is convergent or divergent. You can use any tests you have learnt so far.

(a) n=1sin(nπ2)\sum_{n=1}^\infty \sin(n\frac{\pi}{2})

limnsin(nπ2)\displaystyle\lim_{n\to\infty}\sin\(n\frac{\pi}{2}\) does not exist. By divergence test, the series diverges.

(b) n=21n(lnn)2\sum_{n=2}^\infty \frac{1}{n(\ln n)^2}

Let f(x)=1xln2x\displaystyle f(x) = \frac{1}{x\ln^2x}.

Since f(x)=1xln2x>0\displaystyle f(x)=\frac{1}{x\ln^2x}>0 and xln2xx\ln^2x is monotonically increasing for x2x\ge2, so its reciprocal f(x)=1xln2x\displaystyle f(x) = \frac{1}{x\ln^2x} is decreasing for x2x\ge2.

By integral test:
21x(lnx)2 ⁣dx=limn2n1x(lnx)2 ⁣dxu=lnx     ⁣du=1x ⁣dx     ⁣dx=x ⁣dux=2    u=ln2x=n    u=lnnlimnln2lnn1x(lnx)2 ⁣dx=limnln2lnnx ⁣duxu2=limnln2lnnu2 ⁣du=limn[1u]ln2lnn=limn1lnn+1ln2=1ln2\int_2^\infty\frac{1}{x(\ln x)^2}\dd x = \lim_{n\to\infty}\int_2^n \frac{1}{x(\ln x)^2}\dd x \\ \begin{darray}{cc} u = \ln x &\implies& \dd u = \frac{1}{x}\dd x \\ &\iff& \dd x = x\dd u \\ x = 2 &\implies& u = \ln 2 \\ x = n &\implies& u = \ln n \end{darray} \\ \begin{align*} \lim_{n\to\infty}\int_{\ln2}^{\ln n} \frac{1}{x(\ln x)^2}\dd x &= \lim_{n\to\infty}\int_{\ln2}^{\ln n} \frac{x\dd u}{x u^2} \\ &= \lim_{n\to\infty}\int_{\ln2}^{\ln n} u^{-2}\dd u \\ &= \lim_{n\to\infty}\[-\frac{1}{u}\]_{\ln2}^{\ln n} \\ &= \lim_{n\to\infty}-\frac{1}{\ln n} + \frac{1}{\ln 2} \\ &= \frac{1}{\ln 2} \end{align*}

Since 21x(lnx)2 ⁣dx=1ln2<\displaystyle\int_2^\infty\frac{1}{x(\ln x)^2}\dd x = \frac{1}{\ln 2} < \infty, the series is convergent.

(c) n=11n3/2+1\sum_{n=1}^\infty \frac{1}{n^{3/2}+1}

Let an=1n3/2+1\displaystyle a_n = \frac{1}{n^{3/2}+1} and bn=1n3/2\displaystyle b_n = \frac{1}{n^{3/2}}.

Then,
anbn=n3/2n3/2+1.limnanbn=1\frac{a_n}{b_n} = \frac{n^{3/2}}{n^{3/2}+1}. \\ \therefore \lim_{n\to\infty}\frac{a_n}{b_n}=1

By limit comparison test, n=1an\displaystyle\sum_{n=1}^\infty a_n and n=1bn\displaystyle\sum_{n=1}^\infty b_n will either converge or diverge together.

Let f(x)=1x3/2\displaystyle f(x)=\frac{1}{x^{3/2}}.

Since f(x)>0\displaystyle f(x)>0 and f(x)=32x5/2<0\displaystyle f'(x)=-\frac{3}{2x^{5/2}} < 0 for all x1x\ge1, we apply the integral test.

11x3/2 ⁣dx=limn1nx3/2 ⁣dx=limn[x1/21/2]1n=limn[2x]1n=limn2n+2=2\begin{align*} \int_1^\infty\frac{1}{x^{3/2}} \dd x &= \lim_{n\to\infty}\int_1^n x^{-3/2}\dd x \\ &= \lim_{n\to\infty}\[\frac{x^{-1/2}}{-1/2}\]_1^n \\ &= \lim_{n\to\infty}\[-\frac{2}{\sqrt{x}}\]_1^n \\ &= \lim_{n\to\infty}-\frac{2}{\sqrt{n}} + 2 \\ &= 2 \end{align*}

By integral test, n=11n3/2\displaystyle \sum_{n=1}^\infty \frac{1}{n^{3/2}} is convergent. Subsequently, by the limit comparison test, the series n=11n3/2+1\displaystyle\sum_{n=1}^\infty \frac{1}{n^{3/2}+1} must also be convergent.

(d) n=1n(n+1)2\sum_{n=1}^\infty \frac{\sqrt{n}}{(n+1)^2}

Let an=n(n+1)2=n1/2n2+2n+1\displaystyle a_n = \frac{\sqrt{n}}{(n+1)^2} = \frac{n^{1/2}}{n^2+2n+1} and bn=1n3/2\displaystyle b_n = \frac{1}{n^{3/2}}.

Then,
anbn=n2n2+2n+1.limnanbn=1\frac{a_n}{b_n} = \frac{n^2}{n^2+2n+1}. \\ \therefore \lim_{n\to\infty}\frac{a_n}{b_n}=1

Since bn=1n3/2\displaystyle b_n = \frac{1}{n^{3/2}} is nonnegative and decreasing, we apply the integral test.

From (c), we concluded that n=11n3/2\displaystyle \sum_{n=1}^\infty\frac{1}{n^{3/2}} is convergent by integral test. Subsequently, by the limit comparison test, the series n=1n(n+1)2\displaystyle\sum_{n=1}^\infty \frac{\sqrt{n}}{(n+1)^2} must also be convergent.

(e) n=2(lnn)2n\sum_{n=2}^\infty \frac{(\ln n)^2}{n}

Since
lnn=1    n=e,\ln n = 1 \iff n =e,

and
 ⁣d ⁣dnlnn=1n>0,n>3\frac{\dd}{\dd n}\ln n = \frac{1}{n} > 0, \forall n>3

we have that
lnn>1,n>3.\ln n > 1 ,\forall n>3.

As such, for all values n>3n>3:
lnn>1    ln2n>1    ln2nn>1n.\ln n > 1 \\ \iff \ln^2n > 1 \\ \iff \frac{\ln^2 n}{n} > \frac{1}{n}.

Since n=21n\displaystyle\sum_{n=2}^\infty\frac{1}{n} is divergent, by comparison test n=2(lnn)2n\displaystyle\sum_{n=2}^\infty\frac{(\ln n)^2}{n} must also be divergent.

(f) n=1n2(n2+10)2\sum_{n=1}^\infty \frac{n^2}{(n^2+10)^2}

Let an=n2(n2+10)2=n2n4+20n2+100\displaystyle a_n = \frac{n^2}{(n^2+10)^2} = \frac{n^2}{n^4 +20n^2 + 100} and bn=1n2\displaystyle b_n =\frac{1}{n^2}.

Then,
anbn=n4n4+20n2+100limnanbn=1\frac{a_n}{b_n} = \frac{n^4}{n^4+20n^2+100} \\ \therefore\lim_{n\to\infty}\frac{a_n}{b_n} = 1

Since n=11n2\displaystyle \sum_{n=1}^\infty \frac{1}{n^2} converges, then by limit comparison n=1n2(n2+10)2\displaystyle \sum_{n=1}^\infty \frac{n^2}{(n^2+10)^2} also converges.

(g) n=1nlnnn3+2\sum_{n=1}^\infty \frac{n\ln n}{n^3+2}

For sufficiently large nn,
nlnnn3+2nn3+2\frac{n\ln n}{n^3+2}\approx\frac{n}{n^3+2}

Let an=nn3+2\displaystyle a_n = \frac{n}{n^3+2} and bn=nϵn2=1n2ϵ\displaystyle b_n = \frac{n^\epsilon}{n^2}=\frac{1}{n^{2-\epsilon}} for some small ϵ>0\epsilon>0.

Then,
anbn=n3ϵn3+2limnanbn=0\frac{a_n}{b_n} = \frac{n^{3-\epsilon}}{n^3+2} \\ \therefore \lim_{n\to\infty}\frac{a_n}{b_n}=0

For small values of ϵ>0\epsilon>0, the series n=11n2ϵ\displaystyle\sum_{n=1}^\infty\frac{1}{n^{2-\epsilon}} converges. As such, by limit comparison test n=1nlnnn3+2\displaystyle\sum_{n=1}^\infty \frac{n\ln n}{n^3+2} converges.

(h) n=21n2(lnn)2\sum_{n=2}^\infty \frac{1}{n^2(\ln n)^2}

lne=1    lnn>1,n>3\ln e = 1 \implies \ln n > 1 ,\forall n>3

So for n>3n>3:
lnn>1    ln2n>1    n2ln2n>n2    1n2ln2n<1n2\ln n > 1 \\ \iff \ln^2 n > 1 \\ \iff n^2\ln^2n > n^2 \\ \iff \frac{1}{n^2\ln^2n} < \frac{1}{n^2}

Since n=21n2\displaystyle\sum_{n=2}^\infty\frac{1}{n^2} converges, by comparison test n=21n2(lnn)2\displaystyle\sum_{n=2}^\infty\frac{1}{n^2(\ln n)^2} also converges.

Section 5.5

State whether each of the following series converges absolutely, conditionally, or not at all.

(251) n=1(1)n+1n+1n+3\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\frac{\sqrt{n}+1}{\sqrt{n}+3}

Let an=n+1n+3\displaystyle a_n = \frac{\sqrt{n}+1}{\sqrt{n}+3}.

limnan=n+1n+3=10\lim_{n\to\infty}a_n = \frac{\sqrt{n}+1}{\sqrt{n}+3} = 1 \neq 0

By divergence test, the series diverges.

(252) n=1(1)n+11n+3\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\frac{1}{\sqrt{n+3}}

Let an=1n+3\displaystyle a_n = \frac{1}{\sqrt{n+3}}.

Since n+3\sqrt{n+3} is monotonically increasing, its reciprocal an=1n+3\displaystyle a_n=\frac{1}{\sqrt{n+3}} must subsequently be decreasing.

And
limnan=limn1n+3=0.\lim_{n\to\infty}a_n =\lim_{n\to\infty}\frac{1}{\sqrt{n+3}} = 0.

By alternating series test, n=1(1)n+11n+3\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\frac{1}{\sqrt{n+3}} is convergent.

Testing for absolute convergence

n=1(1)n+11n+3=n=11n+3\sum_{n=1}^\infty \left|(-1)^{n+1}\frac{1}{\sqrt{n+3}}\right| = \sum_{n=1}^\infty \frac{1}{\sqrt{n+3}}

Let f(x)=1x+3\displaystyle f(x) = \frac{1}{\sqrt{x+3}}.

We note that f(x)>0f(x) >0 and f(x)<0f'(x)<0 for x[1,)x\in[1,\infty).

11x+3 ⁣dx=limn1n(x+3)1/2 ⁣dx=limn[2x+3]1n=limn2n+34=\begin{align*} \int_1^\infty\frac{1}{\sqrt{x+3}}\dd x &= \lim_{n\to\infty}\int_1^n(x+3)^{-1/2}\dd x \\ &= \lim_{n\to\infty}\[2\sqrt{x+3}\]_1^n \\ &= \lim_{n\to\infty} 2\sqrt{n+3}-4 \\ &= \infty \end{align*}

By integral test, we find that the sum of the absolute values of the terms do not converge.

As such, we conclude that n=1(1)n+11n+3\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\frac{1}{\sqrt{n+3}} exhibits conditional convergence.

(260) n=1(1)n+1sin2(1/n)\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\sin^2(1/n)

Since sinxx\displaystyle\sin x\le x for x>0x>0. Then, where an=sin2(1/n)a_n=\sin^2(1/n), we have that 0an+1an0\le a_{n+1}\le a_n for n1n\ge1.

limnsin2(1/n)=sin2(limn1n)=sin20=0\lim_{n\to\infty}\sin^2(1/n) =\sin^2\(\lim_{n\to\infty}\frac{1}{n}\) =\sin^20=0

By alternating series test, the series is convergent.

Testing for absolute convergence

n=1(1)n+1sin2(1/n)=n=1sin2(1/n)\sum_{n=1}^\infty\left|(-1)^{n+1}\sin^2(1/n)\right| =\sum_{n=1}^\infty \sin^2(1/n)

For n>0n>0:
sinnn    sin1n1n    sin21n1n2\sin n \le n \\ \iff \sin\frac{1}{n} \le \frac{1}{n} \\ \iff \sin^2\frac{1}{n} \le \frac{1}{n^2}

Since n=11n2\displaystyle\sum_{n=1}^\infty\frac{1}{n^2} converges, by comparison test n=1sin21n\displaystyle\sum_{n=1}^\infty\sin^2\frac{1}{n} also converges. As such, we conclude that n=1(1)n+1sin2(1/n)\displaystyle\sum_{n=1}^\infty(-1)^{n+1}\sin^2(1/n) exhibits absolute convergence.

(261) n=1(1)n+1cos2(1/n)\displaystyle \sum_{n=1}^\infty (-1)^{n+1}\cos^2(1/n)

limncos2(1/n)=cos2(limn1n)=cos20=10\lim_{n\to\infty}\cos^2(1/n) =\cos^2\(\lim_{n\to\infty}\frac{1}{n}\) =\cos^20 =1\neq0

By divergence test, the series is divergent.