Homework 11
1. Find the singular value decomposition of the following two matrices.
(a) [ 1 − 2 − 3 6 ] \begin{bmatrix}1 & -2 \\-3 & 6\end{bmatrix} [ 1 − 3 − 2 6 ]
Let A = [ 1 − 2 − 3 6 ] A=\begin{bmatrix}1 & -2 \\-3 & 6\end{bmatrix} A = [ 1 − 3 − 2 6 ] .
A ⊤ A = [ 1 − 3 − 2 6 ] [ 1 − 2 − 3 6 ] = [ 10 − 20 − 20 40 ] det ( A ⊤ A − λ I ) = [ 10 − λ − 20 − 20 40 − λ ] = 0 = ( 10 − λ ) ( 40 − λ ) − ( − 20 ) ( − 20 ) = 0 = λ 2 − 50 λ = 0 = λ ( λ − 50 ) = 0 ∴ λ = 0 , 50 A^\top A=\begin{bmatrix}
1 & -3 \\ -2 & 6
\end{bmatrix}\begin{bmatrix}
1 & -2 \\ -3 & 6
\end{bmatrix}
=\begin{bmatrix}
10 & -20 \\
-20 & 40
\end{bmatrix} \\
\begin{align*}
\det(A^\top A-\lambda I)
&= \begin{bmatrix}
10-\lambda & -20 \\
-20 & 40-\lambda
\end{bmatrix} &= 0 \\
&= (10-\lambda)(40-\lambda) - (-20)(-20) &= 0 \\
&= \lambda^2 - 50\lambda &= 0 \\
&= \lambda(\lambda - 50) &= 0
\end{align*}
\\
\therefore \lambda = 0, 50 A ⊤ A = [ 1 − 2 − 3 6 ] [ 1 − 3 − 2 6 ] = [ 10 − 20 − 20 40 ] det ( A ⊤ A − λ I ) = [ 10 − λ − 20 − 20 40 − λ ] = ( 10 − λ ) ( 40 − λ ) − ( − 20 ) ( − 20 ) = λ 2 − 50 λ = λ ( λ − 50 ) = 0 = 0 = 0 = 0 ∴ λ = 0 , 50
λ 1 = 0 \lambda_1 = 0 λ 1 = 0 and λ 2 = 50 \lambda_2=50 λ 2 = 50 are the eigenvalues of A ⊤ A A^\top A A ⊤ A .
λ 1 = 0 ⟹ σ 1 = 0 λ 2 = 50 ⟹ σ 2 = 50 = 5 2 ∴ Σ = [ 0 0 0 5 2 ] \begin{array}{c}
\lambda_1 = 0 &\implies &\sigma_1 = 0 \\
\lambda_2 = 50 &\implies &\sigma_2 = \sqrt{50} = 5\sqrt{2}
\end{array}
\\[1em]
\boxed{\therefore\Sigma = \begin{bmatrix}
0 & 0 \\
0 & 5\sqrt{2}
\end{bmatrix}
} λ 1 = 0 λ 2 = 50 ⟹ ⟹ σ 1 = 0 σ 2 = 50 = 5 2 ∴ Σ = [ 0 0 0 5 2 ]
And so:
rref ( A ⊤ A − λ 1 I ) = rref [ 10 − 0 − 20 − 20 40 − 0 ] = [ 1 − 2 0 0 ] ∴ ker ( A ⊤ A − λ 1 I ) = ker [ 1 − 2 0 0 ] = span { [ 2 1 ] } \operatorname{rref}(A^\top A - \lambda_1 I)
= \operatorname{rref} \begin{bmatrix}
10-0 & -20 \\
-20 & 40-0
\end{bmatrix}
= \begin{bmatrix}
1 & -2 \\ 0 & 0
\end{bmatrix}
\\
\therefore \ker(A^\top A - \lambda_1 I)
= \ker\begin{bmatrix}
1 & -2 \\ 0 & 0
\end{bmatrix}
= \operatorname{span}\Set{
\begin{bmatrix}
2 \\ 1
\end{bmatrix}
} rref ( A ⊤ A − λ 1 I ) = rref [ 10 − 0 − 20 − 20 40 − 0 ] = [ 1 0 − 2 0 ] ∴ ker ( A ⊤ A − λ 1 I ) = ker [ 1 0 − 2 0 ] = span { [ 2 1 ] }
As such, v ⃗ 1 = 1 5 [ 2 1 ] \vector{v}_1 = \displaystyle\frac{1}{\sqrt{5}}\begin{bmatrix}
2 \\ 1
\end{bmatrix} v 1 = 5 1 [ 2 1 ] is an eigenvector corresponding to λ 1 = 0 \lambda_1=0 λ 1 = 0 .
rref ( A ⊤ A − λ 2 I ) = rref [ 10 − 50 − 20 − 20 40 − 50 ] = [ 1 1 / 2 0 0 ] ∴ ker ( A ⊤ A − λ 2 I ) = ker [ 1 1 / 2 0 0 ] = span { [ − 1 / 2 1 ] } \operatorname{rref}(A^\top A - \lambda_2 I)
= \operatorname{rref} \begin{bmatrix}
10-50 & -20 \\
-20 & 40-50
\end{bmatrix}
= \begin{bmatrix}
1 & 1/2 \\ 0 & 0
\end{bmatrix}
\\
\therefore \ker(A^\top A - \lambda_2 I)
= \ker\begin{bmatrix}
1 & 1/2 \\ 0 & 0
\end{bmatrix}
= \operatorname{span}\Set{
\begin{bmatrix}
-1/2 \\ 1
\end{bmatrix}
} rref ( A ⊤ A − λ 2 I ) = rref [ 10 − 50 − 20 − 20 40 − 50 ] = [ 1 0 1/2 0 ] ∴ ker ( A ⊤ A − λ 2 I ) = ker [ 1 0 1/2 0 ] = span { [ − 1/2 1 ] }
As such, v ⃗ 2 = 2 5 [ − 1 / 2 1 ] \vector{v}_2 = \displaystyle\frac{2}{\sqrt{5}}\begin{bmatrix}
-1/2 \\ 1
\end{bmatrix} v 2 = 5 2 [ − 1/2 1 ] is an eigenvector corresponding to λ 2 = 50 \lambda_2=50 λ 2 = 50 .
∴ V = [ 2 / 5 − 1 / 5 1 / 5 2 / 5 ] = 1 5 [ 2 − 1 1 2 ] \boxed{
\therefore V = \begin{bmatrix}
2/\sqrt{5} & -1/\sqrt{5} \\
1/\sqrt{5} & 2/\sqrt{5}
\end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix}
2 & -1 \\ 1 & 2
\end{bmatrix}
} ∴ V = [ 2/ 5 1/ 5 − 1/ 5 2/ 5 ] = 5 1 [ 2 1 − 1 2 ]
Then, u ⃗ i = 1 σ i A v ⃗ i \vector{u}_i = \displaystyle\frac{1}{\sigma_i}A\vector{v}_i u i = σ i 1 A v i for i = 1 , 2 i=1,2 i = 1 , 2 :
Note σ 1 = 0 \sigma_1 = 0 σ 1 = 0 , so we move on to u ⃗ 2 \vector{u}_2 u 2 .
u ⃗ 2 = 1 5 2 [ 1 − 2 − 3 6 ] 2 5 [ − 1 / 2 1 ] = 1 10 [ − 1 3 ] \begin{align*}
\vector{u}_2 &= \frac{1}{5\sqrt{2}}\begin{bmatrix}
1 & -2 \\
-3 & 6
\end{bmatrix}
\frac{2}{\sqrt{5}}\begin{bmatrix}
-1/2 \\ 1
\end{bmatrix} \\
&= \frac{1}{\sqrt{10}}\begin{bmatrix}
-1 \\ 3
\end{bmatrix}
\end{align*} u 2 = 5 2 1 [ 1 − 3 − 2 6 ] 5 2 [ − 1/2 1 ] = 10 1 [ − 1 3 ]
Since σ 1 = 0 \sigma_1=0 σ 1 = 0 and we need one more vector, we need to choose a vector u ⃗ 1 \vector{u}_1 u 1 such that it is orthogonal to u ⃗ 2 \vector{u}_2 u 2 . Since it’s just R 2 \R^2 R 2 , we can just eyeball and make u ⃗ 1 = 1 10 [ 3 1 ] \displaystyle\vector{u}_1 = \frac{1}{\sqrt{10}}\begin{bmatrix}
3 \\ 1
\end{bmatrix} u 1 = 10 1 [ 3 1 ] .
Sanity check: ⟨ u ⃗ 1 , u ⃗ 2 ⟩ = 1 10 ( ( − 1 ) ( 3 ) + 3 ( 1 ) ) = 0 \displaystyle\langle\vector{u}_1,\vector{u}_2\rangle = \frac{1}{\sqrt{10}}((-1)(3) + 3(1)) = 0 ⟨ u 1 , u 2 ⟩ = 10 1 (( − 1 ) ( 3 ) + 3 ( 1 )) = 0 .
∴ U = [ 3 / 10 − 1 / 10 1 / 10 3 / 10 ] = 1 10 [ 3 − 1 1 3 ] \boxed{
\therefore U = \begin{bmatrix}
3/\sqrt{10} & -1/\sqrt{10} \\
1/\sqrt{10} & 3/\sqrt{10}
\end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix}
3 & -1 \\ 1 & 3
\end{bmatrix}
} ∴ U = [ 3/ 10 1/ 10 − 1/ 10 3/ 10 ] = 10 1 [ 3 1 − 1 3 ]
And so, we have that the SVD for A = [ 1 − 2 − 3 6 ] A=\begin{bmatrix}1 & -2 \\-3 & 6\end{bmatrix} A = [ 1 − 3 − 2 6 ] is:
A = U Σ V ⊤ = [ 3 / 10 − 1 / 10 1 / 10 3 / 10 ] [ 0 0 0 5 2 ] [ 2 / 5 − 1 / 5 1 / 5 2 / 5 ] ⊤ = 1 10 [ 3 − 1 1 3 ] [ 0 0 0 5 2 ] 1 5 [ 2 1 − 1 2 ] = [ 1 − 2 − 3 6 ] \begin{align*}
A &= U\Sigma V^\top \\
&= \begin{bmatrix}
3/\sqrt{10} & -1/\sqrt{10} \\
1/\sqrt{10} & 3/\sqrt{10}
\end{bmatrix}\begin{bmatrix}
0 & 0 \\
0 & 5\sqrt{2}
\end{bmatrix}\begin{bmatrix}
2/\sqrt{5} & -1/\sqrt{5} \\
1/\sqrt{5} & 2/\sqrt{5}
\end{bmatrix}^\top \\
&= \frac{1}{\sqrt{10}}\begin{bmatrix}
3 & -1 \\
1 & 3
\end{bmatrix}\begin{bmatrix}
0 & 0 \\
0 & 5\sqrt{2}
\end{bmatrix}\frac{1}{\sqrt{5}}\begin{bmatrix}
2 & 1 \\
-1 & 2
\end{bmatrix} \\
&= \begin{bmatrix}
1 & -2 \\
-3 & 6
\end{bmatrix}
\end{align*} A = U Σ V ⊤ = [ 3/ 10 1/ 10 − 1/ 10 3/ 10 ] [ 0 0 0 5 2 ] [ 2/ 5 1/ 5 − 1/ 5 2/ 5 ] ⊤ = 10 1 [ 3 1 − 1 3 ] [ 0 0 0 5 2 ] 5 1 [ 2 − 1 1 2 ] = [ 1 − 3 − 2 6 ]
(b) [ 2 1 0 − 1 0 − 1 1 − 1 ] \begin{bmatrix}2 & 1 & 0 & -1 \\0 & -1 & 1 & -1\end{bmatrix} [ 2 0 1 − 1 0 1 − 1 − 1 ]
Let A = [ 2 1 0 − 1 0 − 1 1 − 1 ] A=\begin{bmatrix}2 & 1 & 0 & -1 \\0 & -1 & 1 & -1\end{bmatrix} A = [ 2 0 1 − 1 0 1 − 1 − 1 ] .
A ⊤ A = [ 4 2 0 − 2 2 2 − 1 0 0 − 1 1 − 1 − 2 0 − 1 2 ] det ( A ⊤ A − λ I ) = [ 4 − λ 2 0 − 2 2 2 − λ − 1 0 0 − 1 1 − λ − 1 − 2 0 − 1 2 − λ ] = 0 = λ 4 − 9 λ 3 + 18 λ 2 = 0 = λ 2 ( λ − 3 ) ( λ − 6 ) = 0 ∴ λ = 0 , 3 , 6 A^\top A = \begin{bmatrix}
4 & 2 & 0 & -2 \\
2 & 2 & -1 & 0 \\
0 & -1 & 1 & -1 \\
-2 & 0 & -1 & 2
\end{bmatrix} \\
\begin{align*}
\det(A^\top A-\lambda I)
&= \begin{bmatrix}
4-\lambda & 2 & 0 & -2 \\
2 & 2-\lambda & -1 & 0 \\
0 & -1 & 1-\lambda & -1 \\
-2 & 0 & -1 & 2-\lambda
\end{bmatrix} &= 0 \\
&= \lambda^4 - 9\lambda^3 + 18\lambda^2 &= 0 \\
&= \lambda^2(\lambda - 3)(\lambda - 6) &= 0
\end{align*}
\\
\therefore \lambda = 0,3,6 A ⊤ A = 4 2 0 − 2 2 2 − 1 0 0 − 1 1 − 1 − 2 0 − 1 2 det ( A ⊤ A − λ I ) = 4 − λ 2 0 − 2 2 2 − λ − 1 0 0 − 1 1 − λ − 1 − 2 0 − 1 2 − λ = λ 4 − 9 λ 3 + 18 λ 2 = λ 2 ( λ − 3 ) ( λ − 6 ) = 0 = 0 = 0 ∴ λ = 0 , 3 , 6
λ 1 = 0 \lambda_1=0 λ 1 = 0 , λ 2 = 3 \lambda_2=3 λ 2 = 3 , and λ 3 = 6 \lambda_3=6 λ 3 = 6 are eigenvalues of A ⊤ A A^\top A A ⊤ A .
λ 1 = 0 ⟹ σ 1 = 0 λ 2 = 3 ⟹ σ 2 = 3 λ 3 = 6 ⟹ σ 3 = 6 ∴ Σ = [ 3 0 0 0 0 6 0 0 ] \begin{array}{c}
\lambda_1 = 0 &\implies &\sigma_1 = 0 \\
\lambda_2 = 3 &\implies &\sigma_2 = \sqrt{3} \\
\lambda_3 = 6 &\implies &\sigma_3 = \sqrt{6}
\end{array}
\\[1em]
\boxed{
\therefore\Sigma = \begin{bmatrix}
\sqrt{3} & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 0
\end{bmatrix}
} λ 1 = 0 λ 2 = 3 λ 3 = 6 ⟹ ⟹ ⟹ σ 1 = 0 σ 2 = 3 σ 3 = 6 ∴ Σ = [ 3 0 0 6 0 0 0 0 ]
And so:
rref ( A ⊤ A − λ 1 I ) = rref [ 4 − 0 2 0 − 2 2 2 − 0 − 1 0 0 − 1 1 − 0 − 1 − 2 0 − 1 2 − 0 ] = [ 1 0 1 / 2 − 1 0 1 − 1 1 0 0 0 0 0 0 0 0 ] ∴ ker ( A ⊤ A − λ 1 I ) = ker [ 1 0 1 / 2 − 1 0 1 − 1 1 0 0 0 0 0 0 0 0 ] = span { [ − 1 / 2 1 1 0 ] , [ 1 − 1 0 1 ] } \operatorname{rref}(A^\top A - \lambda_1 I)
= \operatorname{rref} \begin{bmatrix}
4-0 & 2 & 0 & -2 \\
2 & 2-0 & -1 & 0 \\
0 & -1 & 1-0 & -1 \\
-2 & 0 & -1 & 2-0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 1/2 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\\
\therefore \ker(A^\top A - \lambda_1 I)
= \ker\begin{bmatrix}
1 & 0 & 1/2 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
= \operatorname{span}\Set{
\begin{bmatrix}
-1/2 \\ 1 \\ 1 \\ 0
\end{bmatrix},
\begin{bmatrix}
1 \\ -1 \\ 0 \\ 1
\end{bmatrix}
} rref ( A ⊤ A − λ 1 I ) = rref 4 − 0 2 0 − 2 2 2 − 0 − 1 0 0 − 1 1 − 0 − 1 − 2 0 − 1 2 − 0 = 1 0 0 0 0 1 0 0 1/2 − 1 0 0 − 1 1 0 0 ∴ ker ( A ⊤ A − λ 1 I ) = ker 1 0 0 0 0 1 0 0 1/2 − 1 0 0 − 1 1 0 0 = span ⎩ ⎨ ⎧ − 1/2 1 1 0 , 1 − 1 0 1 ⎭ ⎬ ⎫
As such, 2 3 [ − 1 / 2 1 1 0 ] , 1 3 [ 1 − 1 0 1 ] \displaystyle\frac{2}{3}\begin{bmatrix}
-1/2 \\ 1 \\ 1 \\ 0
\end{bmatrix},\frac{1}{\sqrt{3}}
\begin{bmatrix}
1 \\ -1 \\ 0 \\ 1
\end{bmatrix} 3 2 − 1/2 1 1 0 , 3 1 1 − 1 0 1 are eigenvectors corresponding to λ 1 = 0 \lambda_1=0 λ 1 = 0 .
rref ( A ⊤ A − λ 2 I ) = rref [ 4 − 3 2 0 − 2 2 2 − 3 − 1 0 0 − 1 1 − 3 − 1 − 2 0 − 1 2 − 3 ] = [ 1 0 0 0 0 1 0 − 1 0 0 1 1 0 0 0 0 ] ∴ ker ( A ⊤ A − λ 2 I ) = ker [ 1 0 0 0 0 1 0 − 1 0 0 1 1 0 0 0 0 ] = span { [ 0 1 − 1 1 ] } \operatorname{rref}(A^\top A - \lambda_2 I)
= \operatorname{rref} \begin{bmatrix}
4-3 & 2 & 0 & -2 \\
2 & 2-3 & -1 & 0 \\
0 & -1 & 1-3 & -1 \\
-2 & 0 & -1 & 2-3
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\\
\therefore \ker(A^\top A - \lambda_2 I)
= \ker\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
= \operatorname{span}\Set{
\begin{bmatrix}
0 \\ 1 \\ -1 \\ 1
\end{bmatrix}
} rref ( A ⊤ A − λ 2 I ) = rref 4 − 3 2 0 − 2 2 2 − 3 − 1 0 0 − 1 1 − 3 − 1 − 2 0 − 1 2 − 3 = 1 0 0 0 0 1 0 0 0 0 1 0 0 − 1 1 0 ∴ ker ( A ⊤ A − λ 2 I ) = ker 1 0 0 0 0 1 0 0 0 0 1 0 0 − 1 1 0 = span ⎩ ⎨ ⎧ 0 1 − 1 1 ⎭ ⎬ ⎫
As such, v ⃗ 2 = 1 3 [ 0 1 − 1 1 ] \vector{v}_2 = \displaystyle\frac{1}{\sqrt{3}}\begin{bmatrix}
0 \\ 1 \\ -1 \\ 1
\end{bmatrix} v 2 = 3 1 0 1 − 1 1 is an eigenvector corresponding to λ 2 = 3 \lambda_2=3 λ 2 = 3 .
rref ( A ⊤ A − λ 3 I ) = rref [ 4 − 6 2 0 − 2 2 2 − 6 − 1 0 0 − 1 1 − 6 − 1 − 2 0 − 1 2 − 6 ] = [ 1 0 0 2 0 1 0 1 0 0 1 0 0 0 0 0 ] ∴ ker ( A ⊤ A − λ 3 I ) = ker [ 1 0 0 2 0 1 0 1 0 0 1 0 0 0 0 0 ] = span { [ − 2 − 1 0 1 ] } \operatorname{rref}(A^\top A - \lambda_3 I)
= \operatorname{rref} \begin{bmatrix}
4-6& 2 & 0 & -2 \\
2 & 2-6& -1 & 0 \\
0 & -1 & 1-6& -1 \\
-2 & 0 & -1 & 2-6 \end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\\
\therefore \ker(A^\top A - \lambda_3 I)
= \ker\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
= \operatorname{span}\Set{
\begin{bmatrix}
-2 \\ -1 \\ 0 \\ 1
\end{bmatrix}
} rref ( A ⊤ A − λ 3 I ) = rref 4 − 6 2 0 − 2 2 2 − 6 − 1 0 0 − 1 1 − 6 − 1 − 2 0 − 1 2 − 6 = 1 0 0 0 0 1 0 0 0 0 1 0 2 1 0 0 ∴ ker ( A ⊤ A − λ 3 I ) = ker 1 0 0 0 0 1 0 0 0 0 1 0 2 1 0 0 = span ⎩ ⎨ ⎧ − 2 − 1 0 1 ⎭ ⎬ ⎫
As such, v ⃗ 3 = 1 6 [ − 2 − 1 0 1 ] \vector{v}_3 = \displaystyle\frac{1}{\sqrt{6}} \begin{bmatrix}
-2 \\ -1 \\ 0 \\ 1
\end{bmatrix} v 3 = 6 1 − 2 − 1 0 1 is an eigenvector corresponding to λ 3 = 6 \lambda_3=6 λ 3 = 6 .
∴ V = [ − 1 / 3 1 / 3 0 − 2 / 3 2 / 3 − 1 / 3 1 / 3 − 1 / 6 2 / 3 0 − 1 / 3 0 0 1 / 3 1 / 3 1 / 6 ] \boxed{
\therefore V = \begin{bmatrix}
-1/3 & 1/\sqrt{3} & 0 &-\sqrt{2/3} \\
2/3 & -1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{6} \\
2/3 & 0 & -1/\sqrt{3} & 0 \\
0 & 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{6}
\end{bmatrix}
}\\ \; ∴ V = − 1/3 2/3 2/3 0 1/ 3 − 1/ 3 0 1/ 3 0 1/ 3 − 1/ 3 1/ 3 − 2/3 − 1/ 6 0 1/ 6
Then, u ⃗ i = 1 σ i A v ⃗ i \vector{u}_i = \displaystyle\frac{1}{\sigma_i}A\vector{v}_i u i = σ i 1 A v i for i = 2 , 3 i=2,3 i = 2 , 3 :
u ⃗ 2 = 1 3 [ 2 1 0 − 1 0 − 1 1 − 1 ] 1 3 [ 0 1 − 1 1 ] = [ 0 − 1 ] u ⃗ 3 = 1 6 [ 2 1 0 − 1 0 − 1 1 − 1 ] 1 6 [ − 2 − 1 0 1 ] = [ − 1 0 ] ∴ U = [ 0 − 1 − 1 0 ] \begin{align*}
\vector{u}_2 &= \frac{1}{\sqrt{3}}\begin{bmatrix}
2 & 1 & 0 & -1 \\
0 & -1 & 1 & -1
\end{bmatrix}
\frac{1}{\sqrt{3}}\begin{bmatrix}
0 \\ 1 \\ -1 \\ 1
\end{bmatrix} \\
&= \begin{bmatrix}
0 \\ -1
\end{bmatrix} \\
\vector{u}_3 &= \frac{1}{\sqrt{6}}\begin{bmatrix}
2 & 1 & 0 & -1 \\
0 & -1 & 1 & -1
\end{bmatrix}\frac{1}{\sqrt{6}} \begin{bmatrix}
-2 \\ -1 \\ 0 \\ 1
\end{bmatrix} \\
&= \begin{bmatrix}
-1 \\ 0
\end{bmatrix}
\end{align*}
\\[1em]
\boxed{
\therefore U = \begin{bmatrix}
0 & -1 \\ -1 & 0
\end{bmatrix}
} u 2 u 3 = 3 1 [ 2 0 1 − 1 0 1 − 1 − 1 ] 3 1 0 1 − 1 1 = [ 0 − 1 ] = 6 1 [ 2 0 1 − 1 0 1 − 1 − 1 ] 6 1 − 2 − 1 0 1 = [ − 1 0 ] ∴ U = [ 0 − 1 − 1 0 ]
And so, we have that the SVD for A = [ 1 − 2 − 3 6 ] A=\begin{bmatrix}1 & -2 \\-3 & 6\end{bmatrix} A = [ 1 − 3 − 2 6 ] is:
A = U Σ V ⊤ = [ 0 − 1 − 1 0 ] [ 3 0 0 0 0 6 0 0 ] [ − 1 / 3 1 / 3 0 − 2 / 3 2 / 3 − 1 / 3 1 / 3 − 1 / 6 2 / 3 0 − 1 / 3 0 0 1 / 3 1 / 3 1 / 6 ] ⊤ = [ 0 − 1 − 1 0 ] [ 3 0 0 0 0 6 0 0 ] [ − 1 / 3 2 / 3 2 / 3 0 1 / 3 − 1 / 3 0 1 / 3 0 1 / 3 − 1 / 3 1 / 3 − 2 / 3 − 1 / 6 0 1 / 6 ] = [ 2 1 0 − 1 0 − 1 1 − 1 ] \begin{align*}
A &= U\Sigma V^\top \\
&= \begin{bmatrix}
0 & -1 \\ -1 & 0
\end{bmatrix}
\begin{bmatrix}
\sqrt{3} & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
-1/3 & 1/\sqrt{3} & 0 &-\sqrt{2/3} \\
2/3 & -1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{6} \\
2/3 & 0 & -1/\sqrt{3} & 0 \\
0 & 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{6}
\end{bmatrix}^\top \\
&= \begin{bmatrix}
0 & -1 \\ -1 & 0
\end{bmatrix}
\begin{bmatrix}
\sqrt{3} & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
-1/3 & 2/3 & 2/3 & 0 \\
1/\sqrt{3} & -1/\sqrt{3} & 0 & 1/\sqrt{3} \\
0 & 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\
-\sqrt{2/3} & -1/\sqrt{6} & 0 & 1/\sqrt{6}
\end{bmatrix} \\
&= \begin{bmatrix}
2 & 1 & 0 & -1 \\
0 & -1 & 1 & -1
\end{bmatrix}
\end{align*} A = U Σ V ⊤ = [ 0 − 1 − 1 0 ] [ 3 0 0 6 0 0 0 0 ] − 1/3 2/3 2/3 0 1/ 3 − 1/ 3 0 1/ 3 0 1/ 3 − 1/ 3 1/ 3 − 2/3 − 1/ 6 0 1/ 6 ⊤ = [ 0 − 1 − 1 0 ] [ 3 0 0 6 0 0 0 0 ] − 1/3 1/ 3 0 − 2/3 2/3 − 1/ 3 1/ 3 − 1/ 6 2/3 0 − 1/ 3 0 0 1/ 3 1/ 3 1/ 6 = [ 2 0 1 − 1 0 1 − 1 − 1 ]
2. A famous application of spectral theorem and SVD is the spectral graph theory. A graph ( V , E ) (V, E) ( V , E ) is a set of vertices V V V with edge set E E E . We say that for x , y ∈ V , x ∼ y x, y \in V , x \sim y x , y ∈ V , x ∼ y if x x x and y y y are connected by an edge in E E E . The Graph Laplacian is defined to be a matrix A A A of size ∣ V ∣ × ∣ V ∣ |V|\times|V| ∣ V ∣ × ∣ V ∣
A x , y = { 1 if x ∼ y − (number of edges starting from x ) if x = y 0 otherwise A_{x,y} = \begin{cases}
1 & \text{if $x \sim y$} \\
-\text{(number of edges starting from $x$)} & \text{if $x = y$} \\
0 & \text{otherwise}
\end{cases} A x , y = ⎩ ⎨ ⎧ 1 − (number of edges starting from x ) 0 if x ∼ y if x = y otherwise
For example, a triangle with three vertices
A = [ − 2 1 1 1 − 2 1 1 1 − 2 ] A = \begin{bmatrix}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{bmatrix} A = − 2 1 1 1 − 2 1 1 1 − 2
(a) Find the SVD for the Laplacian of the triangle graph.
Using an online calculator, we find A = U Σ V ⊤ A = U\Sigma V^\top A = U Σ V ⊤ for
U = [ 1 / 2 1 / 6 1 / 3 0 − 2 / 3 1 / 3 − 1 / 2 1 / 6 1 / 3 ] , Σ = [ 3 0 0 0 3 0 0 0 0 ] , V = [ − 1 / 2 − 1 / 6 1 / 3 0 2 / 3 1 / 3 1 / 2 − 1 / 6 1 / 3 ] . U = \begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\
0 & -\sqrt{2/3} & 1/\sqrt{3} \\
-1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3}
\end{bmatrix},\quad
\Sigma = \begin{bmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{bmatrix},\quad
V = \begin{bmatrix}
-1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\
0 & \sqrt{2/3} & 1/\sqrt{3} \\
1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3}
\end{bmatrix}. U = 1/ 2 0 − 1/ 2 1/ 6 − 2/3 1/ 6 1/ 3 1/ 3 1/ 3 , Σ = 3 0 0 0 3 0 0 0 0 , V = − 1/ 2 0 1/ 2 − 1/ 6 2/3 − 1/ 6 1/ 3 1/ 3 1/ 3 .
(b) Write down the graph Laplacian matrix for the square graph and then find its SVD.
Using the definition above, the Laplacian matrix A A A for a square graph is:
A = [ 2 − 1 0 − 1 − 1 2 − 1 0 0 − 1 2 − 1 − 1 0 − 1 2 ] A = \begin{bmatrix}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{bmatrix} A = 2 − 1 0 − 1 − 1 2 − 1 0 0 − 1 2 − 1 − 1 0 − 1 2
Again, sparing the computation. The SVD for the square graph A = U Σ V ⊤ A = U\Sigma V^\top A = U Σ V ⊤ is given by:
U = V = [ − 1 / 2 0 − 1 / 2 1 / 2 1 / 2 − 1 / 2 0 1 / 2 − 1 / 2 0 1 / 2 1 / 2 1 / 2 1 / 2 0 1 / 2 ] , Σ = [ 4 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 ] U = V = \begin{bmatrix}
-1/2 & 0 & -1/\sqrt{2} & 1/2 \\
1/2 & -1/\sqrt{2} & 0 & 1/2 \\
-1/2 & 0 & 1/\sqrt{2} & 1/2 \\
1/2 & 1/\sqrt{2} & 0 & 1/2
\end{bmatrix},\quad
\Sigma = \begin{bmatrix}
4 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} U = V = − 1/2 1/2 − 1/2 1/2 0 − 1/ 2 0 1/ 2 − 1/ 2 0 1/ 2 0 1/2 1/2 1/2 1/2 , Σ = 4 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0