Homework 2

1. Find the reduced row echelon form of the following matrices and compute the rank.

(a) [111112110]\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & 0 \\\end{bmatrix}

[111112110]R3+R2R2R1[111001002]R32R1[111001000]rank([111112110])=2\begin{array}{c} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & 0 \end{bmatrix} &\xrightarrow[R_3 + R_2]{R_2 - R_1} &\begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \\ \end{bmatrix} \\ &\xrightarrow{R_3 - 2R_1} &\begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix} \end{array} \\[2em] \therefore \operatorname{rank}\( \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ -1 & 1 & 0 \end{bmatrix} \) = 2

(b) [11212110123141320352]\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & 0 \\ 1 & 2 & -3 & -1 \\ 4 & -1 & 3 & 2 \\ 0 & 3 & -5 & -2 \\\end{bmatrix}

[11212110123141320352]R3R1R22R1[11210352035241320352]R2R4R2R3R3R2R5R2[11210352035241320352]R3R1R22R1[11214132000000000000]R24R1[11210352000000000000]13R2[1121015323000000000000]R1+R2[101313015323000000000000]rank([11212110123141320352])=2\begin{array}{c} \begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & 0 \\ 1 & 2 & -3 & -1 \\ 4 & -1 & 3 & 2 \\ 0 & 3 & -5 & -2 \end{bmatrix} &\xrightarrow[R_3 - R_1]{R_2 - 2R_1} &\begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 3 & -5 & -2 \\ 0 & 3 & -5 & -2 \\ 4 & -1 & 3 & 2 \\ 0 & 3 & -5 & -2 \end{bmatrix} \\ &\xrightarrow[R_2 \leftrightarrow R_4] {\substack{ R_2 - R_3 \\[.2em] R_3 - R_2 \\[.2em] R_5 - R_2 }} &\begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 3 & -5 & -2 \\ 0 & 3 & -5 & -2 \\ 4 & -1 & 3 & 2 \\ 0 & 3 & -5 & -2 \end{bmatrix} \\ &\xrightarrow[R_3 - R_1]{R_2 - 2R_1} &\begin{bmatrix} 1 & -1 & 2 & 1 \\ 4 & -1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ &\xrightarrow{R_2 - 4R_1} &\begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 3 & -5 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ &\xrightarrow{\frac{1}{3}R_2} &\begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -\frac{5}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ &\xrightarrow{R_1 + R_2} &\begin{bmatrix} 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 1 & -\frac{5}{3} & -\frac{2}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{array} \\[2em] \therefore\operatorname{rank}\( \begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & 0 \\ 1 & 2 & -3 & -1 \\ 4 & -1 & 3 & 2 \\ 0 & 3 & -5 & -2 \end{bmatrix} \) = 2

(c) [111111111113]\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 3 \\\end{bmatrix}

[111111111113]R2R1R3R2[111100020002]12R312R2[111100010001]R3R2R1+R2[111000010000]rank([111111111113])=2\begin{array}{c} \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 3 \\ \end{bmatrix} &\xrightarrow[R_2 - R_1]{R_3 - R_2} &\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \\ \end{bmatrix} \\ &\xrightarrow[\frac{1}{2}R_3]{\frac{1}{2}R_2} &\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \\ &\xrightarrow[R_3 - R_2]{R_1 + R_2} &\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \end{array} \\[2em] \therefore\operatorname{rank}\( \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 3 \\ \end{bmatrix} \) = 2

(d) [302]\begin{bmatrix} 3 \\ 0 \\ -2\end{bmatrix}

[302]12R3R1+32R3[001]R1R2[100]rank([302])=1\begin{array}{c} \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} &\xrightarrow[-\frac{1}{2}R_3]{R_1 + \frac{3}{2}R_3} &\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ &\xrightarrow{R_1 \leftrightarrow R_2} &\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{array} \\[2em] \therefore\operatorname{rank}\( \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \) = 1

2. For which values of a,b,c,d,ea, b, c, d, e is the following matrix in reduced row echelon form? [1ab30200c1d300e011]\begin{bmatrix} 1 & a & b & 3 & 0 & -2 \\ 0 & 0 & c & 1 & d & 3 \\ 0 & 0 & e & 0 & 1 & 1 \\\end{bmatrix}

[1ab30200c1d300e011]\begin{bmatrix} 1 & a & b & 3 & 0 & -2 \\ 0 & 0 & c & 1 & d & 3 \\ 0 & 0 & e & 0 & 1 & 1 \\ \end{bmatrix} is in reduced row echelon form if c=1c=1 and b=d=e=0b=d=e=0.

3. If the rank of a 4×44\times4 matrix AA is 44, what is its rref(A)\operatorname{rref}(A)?

AA must have a full row rank, therefore rref(A)\operatorname{rref}(A) must be:
[1000010000100001]\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}

4. Find all the possible solutions of the following systems.

(i) {x2y+2zw=33x+y+6z+11w=162xy+4z+w=9\left\{\begin{array}{c} x - 2y + 2z - w = 3 \\ 3x + y + 6z + 11w = 16 \\ 2x - y + 4z + w = 9 \\\end{array}\right.

{x2y+2zw=33x+y+6z+11w=162xy+4z+w=9    [12213316111621419]R32R1R23R1[1221307014703033]17R213R3[122130102101011]R1+R3R2R3[112040001001011]R3R2R1+R3[102050001001001]R2R3[102050100100010]{x+2z=5y=1w=0\begin{array}{c} \left\{ \begin{array}{c} x - 2y + 2z - w = 3 \\ 3x + y + 6z + 11w = 16 \\ 2x - y + 4z + w = 9 \\ \end{array} \right. &\iff& \left[ \begin{array}{cccc|c} 1 & - 2 & 2 & - 1 & 3 \\ 3 & 1 & 6 & 11 & 16 \\ 2 & - 1 & 4 & 1 & 9 \end{array} \right] \\ &\xrightarrow[R_3 - 2R_1]{R_2 - 3R_1} &\left[ \begin{array}{cccc|c} 1 & - 2 & 2 & - 1 & 3 \\ 0 & 7 & 0 & 14 & 7\\ 0 & 3 & 0 & 3 & 3 \end{array} \right] \\ &\xrightarrow[\frac{1}{7}R_2]{\frac{1}{3}R_3} &\left[ \begin{array}{cccc|c} 1 & - 2 & 2 & - 1 & 3 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{array} \right] \\ &\xrightarrow[R_1 + R_3]{R_2 - R_3} &\left[ \begin{array}{cccc|c} 1 & -1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array} \right] \\ &\xrightarrow[R_3 - R_2]{R_1 + R_3} &\left[ \begin{array}{cccc|c} 1 & 0 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right] \\ &\xrightarrow{R_2 \leftrightarrow R_3} &\left[ \begin{array}{cccc|c} 1 & 0 & 2 & 0 & 5 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ \end{array} \right] \end{array} \\[2em] \therefore \left\{ \begin{array}{c} x + 2z &= 5 \\ y &= 1 \\ w &= 0 \end{array} \right.

Let zRz\in\R. Then, x=52zx= 5-2z. As such, the solution set is:
{(52z1z0):zR}\left\{ \begin{pmatrix} 5 - 2z \\ 1 \\ z \\ 0 \end{pmatrix} : z \in\R \right\}

(ii) {x+y2z=32xy+3z=7x2y+5z=1\left\{\begin{array}{c} x + y - 2z = -3 \\ 2x - y + 3z = 7 \\ x - 2y + 5z = 1 \\\end{array}\right.

{x+y2z=32xy+3z=7x2y+5z=1    [112321371251]R3R1R22R1[1123037130374]R3R2[1123037130009]\begin{array}{c} \left\{ \begin{array}{c} x + y - 2z = -3 \\ 2x - y + 3z = 7 \\ x - 2y + 5z = 1 \end{array} \right. &\iff &\left[ \begin{array}{ccc|c} 1 & 1 & -2 & -3 \\ 2 & - 1 & 3 & 7 \\ 1 & - 2 & 5 & 1 \end{array} \right] \\ &\xrightarrow[R_3 - R_1]{R_2 - 2R_1} &\left[ \begin{array}{ccc|c} 1 & 1 & -2 & -3 \\ 0 & -3 & 7 & 13 \\ 0 & -3 & 7 & 4 \end{array} \right] \\ &\xrightarrow{R_3 - R_2} &\left[ \begin{array}{ccc|c} 1 & 1 & -2 & -3 \\ 0 & -3 & 7 & 13 \\ 0 & 0 & 0 & -9 \end{array} \right] \end{array}

No solutions.

(iii) {x+2y=12x+5y=23x+6y=3\left\{\begin{array}{c} x + 2y = 1 \\ 2x + 5y = 2 \\ 3x + 6y = 3 \\\end{array}\right.

{x+2y=12x+5y=23x+6y=3    [121252363]R32R1R22R1[121010000]R12R2[101010000]x=1,y=0\begin{array}{c} \left\{ \begin{array}{c} x + 2y = 1 \\ 2x + 5y = 2 \\ 3x + 6y = 3 \end{array} \right. &\iff &\left[ \begin{array}{cc|c} 1 & 2 & 1 \\ 2 & 5 & 2 \\ 3 & 6 & 3 \end{array} \right] \\ &\xrightarrow[R_3 - 2R_1]{R_2 - 2R_1} &\left[ \begin{array}{cc|c} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ &\xrightarrow{R_1 - 2R_2} &\left[ \begin{array}{cc|c} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \end{array} \\[2em] \therefore x=1, y=0

(iv) {x1+x2+x3+9x4=8x2+2x3+8x4=73x1+x37x4=9\left\{\begin{array}{c} x_1 + x_2 + x_3 + 9x_4 = 8 \\ x_2 + 2x_3 + 8x_4 = 7 \\ -3x_1 + x_3 - 7x_4 = 9 \\\end{array}\right.

{x1+x2+x3+9x4=8x2+2x3+8x4=73x1+x37x4=9    [111980128730179]R3+3R1[11198012870342033]R33R2[1119801287002412]12R3[111980128700126]R1R3R22R3[11071401041900126]R1R2[1003501041900126]{x1+3x4=5x2+4x4=19x3+2x4=6\begin{array}{c} \left\{ \begin{array}{c} x_1 + x_2 + x_3 + 9x_4 = 8 \\ x_2 + 2x_3 + 8x_4 = 7 \\ -3x_1 + x_3 - 7x_4 = 9 \end{array} \right. &\iff &\left[ \begin{array}{cccc|c} 1 & 1 & 1 & 9 & 8 \\ 0 & 1 & 2 & 8 & 7 \\ -3 & 0 & 1 & -7 & 9 \end{array} \right] \\ &\xrightarrow{R_3 + 3R_1} &\left[ \begin{array}{cccc|c} 1 & 1 & 1 & 9 & 8 \\ 0 & 1 & 2 & 8 & 7 \\ 0 & 3 & 4 & 20 & 33 \end{array} \right] \\ &\xrightarrow{R_3 - 3R_2} &\left[ \begin{array}{cccc|c} 1 & 1 & 1 & 9 & 8 \\ 0 & 1 & 2 & 8 & 7 \\ 0 & 0 & -2 & -4 & 12 \end{array} \right] \\ &\xrightarrow{-\frac{1}{2}R_3} &\left[ \begin{array}{cccc|c} 1 & 1 & 1 & 9 & 8 \\ 0 & 1 & 2 & 8 & 7 \\ 0 & 0 & 1 & 2 & -6 \end{array} \right] \\ &\xrightarrow[R_1 - R_3]{R_2 - 2R_3} &\left[ \begin{array}{cccc|c} 1 & 1 & 0 & 7 & 14 \\ 0 & 1 & 0 & 4 & 19 \\ 0 & 0 & 1 & 2 & -6 \end{array} \right] \\ &\xrightarrow{R_1 - R_2} &\left[ \begin{array}{cccc|c} 1 & 0 & 0 & 3 & -5 \\ 0 & 1 & 0 & 4 & 19 \\ 0 & 0 & 1 & 2 & -6 \end{array} \right] \end{array} \\[2em] \therefore \left\{ \begin{array}{c} x_1 + 3x_4 &= -5 \\ x_2 + 4x_4 &= 19 \\ x_3 + 2x_4 &= -6 \end{array} \right.

Let x4Rx_4\in\R. Then:
x1=53x4x2=194x4x3=62x4x_1 = -5-3x_4 \\ x_2 = 19-4x_4 \\ x_3 = -6-2x_4

As such, the solution set is:
{(53x4194x462x4x4):x4R}={(51960)+(3421)x4:x4R}\left\{ \begin{pmatrix} -5-3x_4 \\ 19-4x_4 \\ -6-2x_4 \\ x_4 \end{pmatrix} : x_4 \in \R \right\} = \left\{ \begin{pmatrix} -5 \\ 19 \\ -6 \\ 0 \end{pmatrix} + \begin{pmatrix} - 3 \\ - 4 \\ - 2 \\ 1 \end{pmatrix} x_4 : x_4 \in \R \right\}

5. Determine kk for which the following system has infinitely many solutions. {x+y=02y+2kz=1y+kz=2k\left\{\begin{array}{c} x + y = 0 \\ 2y + 2kz = 1 \\ y + kz = 2k \\\end{array}\right.

{x+y=02y+2kz=1y+kz=2k    [1100022k101k2k]R22R3[110000014k01k2k]R2R3[110001k2k00014k]rank([110001k2k00014k])<3    k=14\begin{array}{c} \left\{ \begin{array}{c} x + y = 0 \\ 2y + 2kz = 1 \\ y + kz = 2k \\ \end{array} \right. &\iff &\left[ \begin{array}{ccc|c} 1 & 1 & 0 & 0 \\ 0 & 2 & 2k & 1 \\ 0 & 1 & k & 2k \end{array} \right] \\ &\xrightarrow{R_2 - 2R_3} &\left[ \begin{array}{ccc|c} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1-4k \\ 0 & 1 & k & 2k \end{array} \right] \\ &\xrightarrow{R_2 \leftrightarrow R_3} &\left[ \begin{array}{ccc|c} 1 & 1 & 0 & 0 \\ 0 & 1 & k & 2k \\ 0 & 0 & 0 & 1-4k \end{array} \right] \end{array} \\[2em] \therefore\operatorname{rank}\left( \left[ \begin{array}{ccc|c} 1 & 1 & 0 & 0 \\ 0 & 1 & k & 2k \\ 0 & 0 & 0 & 1-4k \end{array} \right] \right) < 3 \iff k=\frac{1}{4}

The system will have infinitely many solutions for k=14k=\displaystyle\frac{1}{4}.

6. (True or False) Determine if the following statements are true or false. If it is true, explain and prove it. If it is false, give a counterexample.

Let AA be an 3×53\times5 matrix, then:

(i) Ax=bAx = b always has a solution.

False. Let A=[100000100000100]A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} and b=[110]\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}. Clearly, [100001010001001000]\left[ \begin{array}{ccccc|c} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{array} \right] has no solutions.

(ii) Ax=0Ax = 0 always has a solution.

True. Ax=0    x=0A\vec{x} = \vec{0} \iff \vec{x} = \vec{0}.

(iii) If a system Ax=bAx = b has no solution, then rank(A)<3\operatorname{rank}(A) < 3.

True. Consider the inverse, where rank(A)=3\operatorname{rank}(A) = 3 (which means it has a full row rank). Then, there must be at least one solution.

(iv) There are always infinitely many solutions to the system Ax=0Ax = 0.

True. rank(A)3\operatorname{rank}(A)\leq3 and the number of columns n=5n=5. By definition, for a matrix AA with nn columns where rank(A)<n\operatorname{rank}(A) < n, Ax=0A\vec{x}=\vec{0} will have infinitely many solutions.

(v) It is possible that the system Ax=bAx = b has a unique solution.

True. Sure, it’s possible. Let A=[100000100000100]A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} and b=[111]\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. Then clearly, [100001010001001001]\left[ \begin{array}{ccccc|c} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right] has a unique solution.

Homework 2

  1. Find the reduced row echelon form of the following matrices and compute the rank.
  1. Find all the possible solutions of the following systems.
  1. (True or False) Determine if the following statements are true or false. If it is true, explain and prove it. If it is false, give a counterexample.