Homework 3

1. Find the matrix representation for the following linear transformations.

(a) T(x1,x2,x3)=(3x1x2,x2+x3,x1x2x3)T(x_1, x_2, x_3) = (3x_1 - x_2, x_2 + x_3, x_1 - x_2 - x_3)

T:R3R3T(x)=(310011111)(x1x2x3)T: \R^3 \to \R^3 \\ T(\vec{x}) = \begin{pmatrix} 3 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}

(b) TT maps [100]\begin{bmatrix} 1 \\ 0 \\ 0\end{bmatrix}, and[010]\begin{bmatrix} 0 \\ 1 \\ 0\end{bmatrix} and[001]\begin{bmatrix} 0 \\ 0 \\ 1\end{bmatrix} respectively to[01]\begin{bmatrix} 0 \\ 1\end{bmatrix} ,[11]\begin{bmatrix} 1 \\ 1\end{bmatrix} ,[11]\begin{bmatrix} 1 \\ -1\end{bmatrix}

T:R3R2T(x)=(011111)(x1x2x3)T: \R^3 \to \R^2 \\ T(\vec{x}) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}

(c) T(x1,x2)=x1[112]+x2[115]T(x_1, x_2) = x_1 \begin{bmatrix} 1 \\ 1 \\ 2\end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ 5\end{bmatrix}

T:R2R3T(x)=(111125)(x1x2)T: \R^2 \to \R^3 \\ T(\vec{x}) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}

2. Sketch the image of the square formed by vertices (0,0)(0, 0), (0,1)(0, 1), (1,0)(1, 0) and (1,1)(1, 1) under the linear transformation T(x)=[1123]xT(\mathbf{x}) = \begin{bmatrix} 1 & -1 \\ 2 & 3\end{bmatrix}\mathbf{x}.

The transformed vertices and its image are in red.

T[00]=[1123][00]=[1(0)+(1)(0)2(0)+3(0)]=[00]T[01]=[1123][01]=[1(0)+(1)(1)2(0)+3(1)]=[13]T[10]=[1123][10]=[1(1)+(1)(0)2(1)+3(0)]=[12]T[11]=[1123][11]=[1(1)+(1)(1)2(1)+3(1)]=[05]\begin{array}{c} T\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} &= &\begin{bmatrix} 1(0) + (-1)(0) \\ 2(0) + 3(0) \end{bmatrix} &= &\begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} &= &\begin{bmatrix} 1(0) + (-1)(1) \\ 2(0) + 3(1) \end{bmatrix} &= &\begin{bmatrix} -1 \\ 3 \end{bmatrix} \\ T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} &= &\begin{bmatrix} 1(1) + (-1)(0) \\ 2(1) + 3(0) \end{bmatrix} &= &\begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ T\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} &= &\begin{bmatrix} 1(1) + (-1)(1) \\ 2(1) + 3(1) \end{bmatrix} &= &\begin{bmatrix} 0 \\ 5 \end{bmatrix} \end{array}

3. Sketch the image of the triangle formed by vertices (1,1)(-1, 1), (1,0)(1, 0) and (1,1)(1, 1) under the linear transformation T(x)=[4101]xT(\mathbf{x}) = \begin{bmatrix} 4 & -1 \\ 0 & 1\end{bmatrix}\mathbf{x}.

The transformed vertices and its image are in red.

T[11]=[4101][11]=[4(1)+(1)(1)0(1)+1(1)]=[51]T[10]=[4101][10]=[4(1)+(1)(0)0(1)+1(0)]=[40]T[11]=[4101][11]=[4(1)+(1)(1)0(1)+1(1)]=[31]\begin{array}{c} T\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} &= &\begin{bmatrix} 4(-1) + (-1)(1) \\ 0(-1) + 1(1) \end{bmatrix} &= &\begin{bmatrix} -5 \\ 1 \end{bmatrix} \\ T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} &= &\begin{bmatrix} 4(1) + (-1)(0) \\ 0(1) + 1(0) \end{bmatrix} &= &\begin{bmatrix} 4 \\ 0 \end{bmatrix} \\ T\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} &= &\begin{bmatrix} 4(1) + (-1)(1) \\ 0(1) + 1(1) \end{bmatrix} &= &\begin{bmatrix} 3 \\ 1 \end{bmatrix} \end{array}

4. Let A=[1243]A=\begin{bmatrix} 1 & 2 \\ 4 & -3\end{bmatrix}.

(a) Find A2A^2 and A3A^3.

Since AA is a 2×22\times 2 square matrix, AkA^k is well defined for all natural kk.

A2=[1243][1243]=[1(1)+2(4)1(2)+2(3)4(1)+(3)(4)4(2)+(3)(3)]=[94817]A3=[94817][1243]=[9(1)+(4)(4)9(2)+(4)(3)8(1)+17(4)8(2)+17(3)]=[7306067]\begin{align*} A^2 &= \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \\ &= \begin{bmatrix} 1(1) + 2(4) & 1(2) + 2(-3) \\ 4(1) + (-3)(4) & 4(2) + (-3)(-3) \end{bmatrix} \\ &= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} \end{align*} \\[2em] \begin{align*} A^3 &= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \\ &= \begin{bmatrix} 9(1) + (-4)(4) & 9(2) + (-4)(-3) \\ -8(1) + 17(4) & -8(2) + 17(-3) \end{bmatrix} \\ &= \begin{bmatrix} -7 & 30 \\ 60 & -67 \end{bmatrix} \end{align*}

(b) Find 2A34A+5I22A^3 - 4A + 5I_2 and A2+2A11I2A^2 + 2A - 11I_2.

Assuming I2=[1001]I_2 = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}.

2A34A+5I2=2[1243]34[1243]+5[1001]=[1460120134][481612]+[5005]=[1352104117]A2+2A11I2=[1243]2+2[1243]11[1001]=[94817]+[2486][110011]=[0000]\begin{align*} 2A^3 - 4A + 5I_2 &= 2 \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}^3 - 4 \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} + 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} -14 & 60 \\ 120 & -134 \end{bmatrix} - \begin{bmatrix} 4 & 8 \\ 16 & -12 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \\ &= \begin{bmatrix} -13 & 52 \\ 104 & -117 \end{bmatrix} \end{align*} \\[2em] \begin{align*} A^2 + 2A - 11I_2 &= \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}^2 + 2 \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} - 11 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 8 & -6 \end{bmatrix} - \begin{bmatrix} 11 & 0 \\ 0 & 11 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{align*}

5. Let v=[v1v2v3]\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3\end{bmatrix}, vT=[v1v2v3]\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & v_3\end{bmatrix}, and v10v_1 \neq 0.

(a) Find vTv\mathbf{v}^T\mathbf{v} and vvT\mathbf{vv}^T.

vTv=[v1v2v3][v1v2v3]=[v12+v22+v32]vvT=[v1v2v3][v1v2v3]=[v12v1v2v1v3v1v2v22v2v3v1v3v2v3v32]\begin{align*} \mathbf{v}^T\mathbf{v} &= \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \\ &= \begin{bmatrix} v_1^2 + v_2^2 + v_3^2 \end{bmatrix} \end{align*} \\[2em] \begin{align*} \mathbf{vv}^T &= \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \\ &= \begin{bmatrix} v_1^2 & v_1 v_2 & v_1 v_3 \\ v_1v_2 & v_2^2 & v_2v_3 \\ v_1v_3 & v_2v_3 & v_3^2 \end{bmatrix} \end{align*}

(b) If v0\mathbf{v}\neq\mathbf{0}, verify that the rank of vTv\mathbf{v}^T\mathbf{v} and vvT\mathbf{vv}^T are 11.

v10    v12>0    v12+v22+v32>0v0v10    vTv0    rank(vTv)=1vvT=[v12v1v2v1v3v1v2v22v2v3v1v3v2v3v32]1v3R31v2R2[v12v1v2v1v3v1v2v3v1v2v3]R3R2R2R3[v12v1v2v1v3000000]v0v10    vvT0    rank(vvT)=1\begin{align*} v_1\neq0 &\implies v_1^2 > 0 \\ &\iff v_1^2 + v_2^2 + v_3^2 > 0 \end{align*} \\ \therefore \mathbf{v}\neq\mathbf{0} \land v_1\neq 0 \implies \mathbf{v}^T\mathbf{v} \neq \mathbf{0} \iff \operatorname{rank}(\mathbf{v}^T\mathbf{v}) = 1 \\[2em] \begin{array}{c} \mathbf{vv}^T = \begin{bmatrix} v_1^2 & v_1 v_2 & v_1 v_3 \\ v_1v_2 & v_2^2 & v_2v_3 \\ v_1v_3 & v_2v_3 & v_3^2 \end{bmatrix} &\xrightarrow[\frac{1}{v_3} R_3]{\frac{1}{v_2} R_2} &\begin{bmatrix} v_1^2 & v_1 v_2 & v_1 v_3 \\ v_1 & v_2 & v_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \\ &\xrightarrow[R_3 - R_2]{R_2 - R_3} &\begin{bmatrix} v_1^2 & v_1 v_2 & v_1 v_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{array} \\ \therefore \mathbf{v}\neq\mathbf{0} \land v_1\neq 0 \implies \mathbf{vv}^T \neq \mathbf{0} \iff \operatorname{rank}(\mathbf{vv}^T) = 1

Homework 3

  1. Find the matrix representation for the following linear transformations.
  1. Let A=[1243]A=\begin{bmatrix} 1 & 2 \\ 4 & -3\end{bmatrix}.
  1. Let v=[v1v2v3]\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3\end{bmatrix}, vT=[v1v2v3]\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & v_3\end{bmatrix}, and v10v_1 \neq 0.