T:R3→R3T(x)=301−11−101−1x1x2x3
(b) T maps 100, and010 and001 respectively to[01] ,[11] ,[1−1]
T:R3→R2T(x)=(01111−1)x1x2x3
T:R2→R3T(x)=112−115(x1x2)
The transformed vertices and its image are in red.
T[00]=[12−13][00]T[01]=[12−13][01]T[10]=[12−13][10]T[11]=[12−13][11]====[1(0)+(−1)(0)2(0)+3(0)][1(0)+(−1)(1)2(0)+3(1)][1(1)+(−1)(0)2(1)+3(0)][1(1)+(−1)(1)2(1)+3(1)]====[00][−13][12][05]
The transformed vertices and its image are in red.
T[−11]=[40−11][−11]T[10]=[40−11][10]T[11]=[40−11][11]===[4(−1)+(−1)(1)0(−1)+1(1)][4(1)+(−1)(0)0(1)+1(0)][4(1)+(−1)(1)0(1)+1(1)]===[−51][40][31]
(a) Find A2 and A3.
Since A is a 2×2 square matrix, Ak is well defined for all natural k.
A2=[142−3][142−3]=[1(1)+2(4)4(1)+(−3)(4)1(2)+2(−3)4(2)+(−3)(−3)]=[9−8−417]A3=[9−8−417][142−3]=[9(1)+(−4)(4)−8(1)+17(4)9(2)+(−4)(−3)−8(2)+17(−3)]=[−76030−67]
(b) Find 2A3−4A+5I2 and A2+2A−11I2.
Assuming I2=[1001].
2A3−4A+5I2=2[142−3]3−4[142−3]+5[1001]=[−1412060−134]−[4168−12]+[5005]=[−1310452−117]A2+2A−11I2=[142−3]2+2[142−3]−11[1001]=[9−8−417]+[284−6]−[110011]=[0000]
5. Let v=v1v2v3, vT=[v1v2v3], and v1=0.
(a) Find vTv and vvT.
vTv=[v1v2v3]v1v2v3=[v12+v22+v32]vvT=v1v2v3[v1v2v3]=v12v1v2v1v3v1v2v22v2v3v1v3v2v3v32
(b) If v=0, verify that the rank of vTv and vvT are 1.
v1=0⟹v12>0⟺v12+v22+v32>0∴v=0∧v1=0⟹vTv=0⟺rank(vTv)=1vvT=v12v1v2v1v3v1v2v22v2v3v1v3v2v3v32v21R2v31R3R2−R3R3−R2v12v1v1v1v2v2v2v1v3v3v3v1200v1v200v1v300∴v=0∧v1=0⟹vvT=0⟺rank(vvT)=1