Using the fact that [432−1] is a 2×2 matrix such that:
det([432−1])=4(−1)−3(2)=−10=0
Then:
[432−1]−1=−101[−1−3−24]=[10110351−52]
100250305210001000151R221R3R2−R3R1−30R3R1−2R21002103011100051000211002100011000510−15−2121100010001100−52510−14−2121∴1002503052−1=100−52510−14−2121=1011000−420−140−55
13−1312362100010001R2+3R3R3+R1R2−R351R3R2−R3R3−R2−51R3R1−3R3R2−6R3R1−3R210037531251010100311003213711−15101002511003113611−56510100595110031036−51−565701−1059−581003103611−56−257015105925810031000125462512−257−53−5151−2524−253258100010001522512−2570−5151−53−253258∴13−1312362−1=522512−2570−5151−53−253258=2511012−70−55−15−38
11003000311031111000010000100001R2−R3R3−R4R1−3R3R1−3R4R1−R2R1↔R231R21100300030103001100001000−11000−11110030000010300110000100−3−11030−11110030000010000110000100−3−11000−1101003000001000011000−1100−2−11000−111000010000100001031001−3100−1−321000−11∴1100300031103111−1=031001−3100−1−321000−11=3101003−100−3−23000−33
[cosθsinθ−sinθcosθ]
Using the fact that [cosθsinθ−sinθcosθ] is a 2×2 matrix such that:
det([cosθsinθ−sinθcosθ])=cos2θ−(−sinθsinθ)=cos2θ+sin2θ=1=0
Then:
[cosθsinθ−sinθcosθ]−1=11[cosθ−sinθsinθcosθ]=[cosθ−sinθsinθcosθ]
T:R3→R3T(x)=110100111x1x2x3
Let A=110100111. Then, T−1 exists if A−1 exists.
110100111R1−R2R2−R3010100001R1↔R2100010001
A has a full rank. Therefore, T is invertible.
An n×n matrix M is invertible if and only if rank(M)=n.
Let A and B be 1×1 matrices.
A=[1]B=[−1]⟹⟹rank(A)=1rank(B)=1⟹⟹A−1=[1]B−1=[−1]
Hence, A and B are invertible.
A+B=[1]+[−1]=[0]⟹rank(A+B)=0=1
Hence, A+B is not invertible.
Let A and B be 2×2 matrices.
A=[1000]B=[0001]⟹⟹rank(A)=1=2rank(B)=1=2
Hence, A and B are not invertible.
A+B=[1000]+[0001]=[1001]⟹⟹rank(A+B)=2(A+B)−1=[1001]
Hence, A+B is invertible.
aaabaabbaR2−R1R3−R2a00ba−b0b0a−b
The matrix is not invertible if a=b or a=0.
True. If an n×n matrix A contains a zero row, then rank(A)<n.
False. If there is a zero on the major diagonal, then they will not have a full rank.
False. rref(A) would be the identity matrix and therefore Ax=0⟺x=0.
False. Let A be an m×n matrix and B be an n×m for nonzero m=n.
A and B are not invertible because they are not square matrices. AB is an m×m square matrix and could be invertible if rank(AB)=n.
For example: let A=[11] and B=[11]. Then, AB=[2]⟹(AB)−1=[21].
True.
(A2)−1=(AA)−1=A−1A−1=(A−1)2
False. Let A=B=[1]. Then:
(A+B)−1=[2]−1=[21]A−1+B−1=[1]+[1]=[2]∴(A+B)−1=A−1+B−1
(i) Let A be an n×n matrix. Expand (I−A)(I+A+A2).
(I−A)(I+A+A2)=I(I−A)+A(I−A)+A2(I−A)=I2−AI+AI−A2+A2I−A3A2I=A2=I2−A3=I−A3
(I−A)(I+A+A2)=I⟺(I−A)−1(I+A+A2)=I⟺(I−A)(I+A+A2)−1=I∴(I−A)−1=(I+A+A2)
From (i) and (ii), we use
(I−A)(I+A+A2)
to find (I−A)−1 for A3=O. Then, for Ak=O, we can use:
(I−A)(I+A+A2+⋯+Ak−1)
We note that the second term is in a geometric form, something that I definitely remembered from Calculus II without Dr. Lai pointing it out.
So, let the identity matrix I be the coefficient and the invertible n×n matrix A be the common factor. As such, we have:
(I−A)n=0∑k−1IAn=(I−A)(IA0+IA1+IA2+⋯+IAk−1)=(I−A)(I+IA+IA2+⋯+IAk−1)=(I−A)(I+A+A2+⋯+Ak−1)=I(I+A+A2+⋯+Ak−1)−A(I+A+A2+⋯+Ak−1)=(I+A+A2+⋯+Ak−1)−(A+A2+⋯+Ak−1+Ak)=I+(A+A2+⋯+Ak−1)−(A+A2+⋯+Ak−1+Ak)=I−Ak
Then, if Ak=O,
(I−A)n=0∑k−1IAn=I
which implies
(I−A)−1=n=0∑k−1IAn=I+A+A2+⋯+Ak−1.