1. (Although this question is just copying definitions, this is important to understand the whole concepts and I expect students should remember these definitions) Write down the definition of the following:
W W W is a subspace if:
given vectors u , v ∈ W \mathbf{u}, \mathbf{v}\in W u , v ∈ W , then u + v ∈ W \mathbf{u+v}\in W u + v ∈ W ; and
given scalar α ∈ R \alpha\in\R α ∈ R and vector v ∈ W \mathbf{v}\in W v ∈ W , then α v ∈ W \alpha\mathbf{v}\in W α v ∈ W .
The set of all linear combinations c 1 v 1 + ⋯ + c n v n c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n c 1 v 1 + ⋯ + c n v n of the vectors v 1 , … , v n \mathbf{v}_1, \ldots, \mathbf{v}_n v 1 , … , v n is called their span.
span { v 1 , … , v n } = { c 1 v 1 + ⋯ + c n v n : c 1 , … , c n ∈ R } \operatorname{span}\set{\mathbf{v}_1, \ldots, \mathbf{v}_n} =
\set{c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n : c_1,\ldots,c_n\in \R} span { v 1 , … , v n } = { c 1 v 1 + ⋯ + c n v n : c 1 , … , c n ∈ R }
…if and only if
{ x 1 v 1 + ⋯ + x n v n : x i ∈ R } \set{x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n : x_i\in\R} { x 1 v 1 + ⋯ + x n v n : x i ∈ R }
are distinct vectors.
…if and only if
∃ v j ∈ span { v i : i ≠ j } \exists\mathbf{v}_j \in \operatorname{span}\set{\mathbf{v}_i: i\neq j} ∃ v j ∈ span { v i : i = j }
…if:
{ v 1 , … , v n } \set{\mathbf{v}_1, \ldots, \mathbf{v}_n} { v 1 , … , v n } are linearly independent; and
span { v 1 , … , v n } = V \operatorname{span}\set{\mathbf{v}_1, \ldots, \mathbf{v}_n} = V span { v 1 , … , v n } = V .
This means that every vector in V V V is a unique linear combination of { v 1 , … , v n } \set{\mathbf{v}_1, \ldots, \mathbf{v}_n} { v 1 , … , v n } .
…is the number of vectors that make up a basis of V V V .
Clearly, ( 0 , 0 , 0 ) ∉ W 1 (0,0,0)\notin W_1 ( 0 , 0 , 0 ) ∈ / W 1 . Therefore W 1 W_1 W 1 is not a subspace of R 3 \R^3 R 3 .
( x , y , z ) = ( 0 , 0 , 0 ) ⟹ 0 ≠ 0 + 2 ∴ 0 ∉ W 1 (x,y,z) = (0,0,0) \implies 0 \neq 0 + 2 \\
\therefore \mathbf{0}\notin W_1 ( x , y , z ) = ( 0 , 0 , 0 ) ⟹ 0 = 0 + 2 ∴ 0 ∈ / W 1
(ii) W 2 = { ( x , y , z ) : x = 3 y and z = − y } W_2 = \set{(x, y, z) : x = 3y \text{ and } z = -y} W 2 = { ( x , y , z ) : x = 3 y and z = − y }
Consider two vectors ( x 1 y 1 z 1 ) , ( x 2 y 2 z 2 ) ∈ W 2 \begin{pmatrix}
x_1 \\ y_1 \\ z_1
\end{pmatrix}, \begin{pmatrix}
x_2 \\ y_2 \\ z_2
\end{pmatrix} \in W_2 x 1 y 1 z 1 , x 2 y 2 z 2 ∈ W 2 .
Then,
( x 1 y 1 z 1 ) ⟺ { x 1 = 3 y 1 z 1 = − y 1 , ( x 2 y 2 z 2 ) ⟺ { x 2 = 3 y 2 z 2 = − y 2 \begin{array}{c}
\begin{pmatrix}
x_1 \\ y_1 \\ z_1
\end{pmatrix} \iff \begin{cases}
x_1 = 3y_1 \\
z_1 = -y_1
\end{cases},
&\begin{pmatrix}
x_2 \\ y_2 \\ z_2
\end{pmatrix} \iff \begin{cases}
x_2 = 3y_2 \\
z_2 = -y_2
\end{cases}
\end{array} x 1 y 1 z 1 ⟺ { x 1 = 3 y 1 z 1 = − y 1 , x 2 y 2 z 2 ⟺ { x 2 = 3 y 2 z 2 = − y 2
And so, for ( x 1 y 1 z 1 ) + ( x 2 y 2 z 2 ) = ( x 1 + x 2 y 1 + y 2 z 1 + z 2 ) \begin{pmatrix}
x_1 \\ y_1 \\ z_1
\end{pmatrix} + \begin{pmatrix}
x_2 \\ y_2 \\ z_2
\end{pmatrix} = \begin{pmatrix}
x_1 + x_2 \\
y_1 + y_2 \\
z_1 + z_2
\end{pmatrix} x 1 y 1 z 1 + x 2 y 2 z 2 = x 1 + x 2 y 1 + y 2 z 1 + z 2 , notice that:
{ x 1 + x 2 = 3 y 1 + 3 y 2 = 3 ( y 1 + y 2 ) z 1 + z 2 = − y 1 − y 2 = − ( y 1 + y 2 ) ⟹ ( x 1 + x 2 y 1 + y 2 z 1 + z 2 ) ∈ W 2 \begin{cases}
x_1 + x_2 = 3y_1 + 3y_2 = 3(y_1 + y_2) \\
z_1 + z_2 = -y_1 - y_2 = -(y_1 + y_2)
\end{cases}
\implies \begin{pmatrix}
x_1 + x_2 \\
y_1 + y_2 \\
z_1 + z_2
\end{pmatrix} \in W_2 { x 1 + x 2 = 3 y 1 + 3 y 2 = 3 ( y 1 + y 2 ) z 1 + z 2 = − y 1 − y 2 = − ( y 1 + y 2 ) ⟹ x 1 + x 2 y 1 + y 2 z 1 + z 2 ∈ W 2
As such, W 2 W_2 W 2 is closed under addition.
Consider α ∈ R \alpha\in\R α ∈ R and u = ( x 1 y 1 z 1 ) ∈ W 2 \mathbf{u}=\begin{pmatrix}
x_1 \\ y_1 \\ z_1
\end{pmatrix}\in W_2 u = x 1 y 1 z 1 ∈ W 2 . Then, for α u = ( α x 1 α y 1 α z 1 ) \alpha\mathbf{u} = \begin{pmatrix}
\alpha x_1 \\ \alpha y_1 \\ \alpha z_1
\end{pmatrix} α u = α x 1 α y 1 α z 1 , notice that:
{ α x 1 = α ( 3 y 1 ) = 3 ( α y 1 ) α z 1 = α ( − y 1 ) = − ( α y 1 ) ⟹ ( α x 1 α y 1 α z 1 ) ∈ W 2 \begin{cases}
\alpha x_1 = \alpha(3y_1) = 3(\alpha y_1) \\
\alpha z_1 = \alpha(-y_1) = -(\alpha y_1)
\end{cases}
\implies \begin{pmatrix}
\alpha x_1 \\ \alpha y_1 \\ \alpha z_1
\end{pmatrix} \in W_2 { α x 1 = α ( 3 y 1 ) = 3 ( α y 1 ) α z 1 = α ( − y 1 ) = − ( α y 1 ) ⟹ α x 1 α y 1 α z 1 ∈ W 2
As such, W 2 W_2 W 2 is closed under scalar multiplication.
Therefore, we can conclude that W 2 W_2 W 2 is a subspace of R 3 \R^3 R 3 .
Consider two vectors u , v ∈ W 3 \mathbf{u},\mathbf{v}\in W_3 u , v ∈ W 3 where: u = ( 1 , 1 , 2 ) \mathbf{u} = (1,1,2) u = ( 1 , 1 , 2 ) and v = ( 2 , 2 , 8 ) \mathbf{v} = (2, 2, 8) v = ( 2 , 2 , 8 ) .
u = ( 1 , 1 , 2 ) ⟹ 2 = 1 2 + 1 2 v = ( 2 , 2 , 8 ) ⟹ 8 = 2 2 + 2 2 \mathbf{u} = (1,1,2) \implies 2 = 1^2 + 1^2 \\
\mathbf{v} = (2, 2, 8) \implies 8 = 2^2 + 2^2 u = ( 1 , 1 , 2 ) ⟹ 2 = 1 2 + 1 2 v = ( 2 , 2 , 8 ) ⟹ 8 = 2 2 + 2 2
Then, u + v = ( 3 , 3 , 10 ) \mathbf{u}+\mathbf{v} = (3, 3, 10) u + v = ( 3 , 3 , 10 ) . But clearly, u + v ∉ W 2 \mathbf{u}+\mathbf{v}\notin W_2 u + v ∈ / W 2 :
u + v = ( 3 , 3 , 10 ) ⟹ 10 ≠ 3 2 + 3 2 \mathbf{u}+\mathbf{v} = (3, 3, 10) \implies 10 \neq 3^2 + 3^2 u + v = ( 3 , 3 , 10 ) ⟹ 10 = 3 2 + 3 2
W 3 W_3 W 3 is not closed under addition, therefore it is not a subspace of R 3 \R^3 R 3 .
(i) v 1 = ( 0 , 1 , 1 ) \mathbf{v}_1 = (0, 1, 1) v 1 = ( 0 , 1 , 1 ) , v 2 = ( 1 , − 1 , 0 ) \mathbf{v}_2 = (1, -1, 0) v 2 = ( 1 , − 1 , 0 ) and v 3 = ( 3 , − 1 , 2 ) \mathbf{v}_3 = (3, -1, 2) v 3 = ( 3 , − 1 , 2 ) .
(ii) v 1 = ( 2 , 1 , 3 ) \mathbf{v}_1 = (2, 1, 3) v 1 = ( 2 , 1 , 3 ) , v 2 = ( 1 , − 2 , 1 ) \mathbf{v}_2 = (1, -2, 1) v 2 = ( 1 , − 2 , 1 ) , v 3 = ( 2 , − 3 , 0 ) \mathbf{v}_3 = (2, -3, 0) v 3 = ( 2 , − 3 , 0 ) and v 4 = ( 0 , − 1 , 4 ) \mathbf{v}_4 = (0, -1, 4) v 4 = ( 0 , − 1 , 4 ) .
(iii) v 1 = ( 1 , 0 , 2 , 1 ) \mathbf{v}_1 = (1, 0, 2, 1) v 1 = ( 1 , 0 , 2 , 1 ) , v 2 = ( − 2 , 3 , − 1 , 1 ) \mathbf{v}_2 = (-2, 3, -1, 1) v 2 = ( − 2 , 3 , − 1 , 1 ) and v 3 = ( 2 , − 2 , 1 , − 1 ) \mathbf{v}_3 = (2, -2, 1, -1) v 3 = ( 2 , − 2 , 1 , − 1 ) .
(i) v 1 = ( 0 , 1 , 1 ) \mathbf{v}_1 = (0, 1, 1) v 1 = ( 0 , 1 , 1 ) , v 2 = ( 1 , − 1 , 0 ) \mathbf{v}_2 = (1, -1, 0) v 2 = ( 1 , − 1 , 0 ) and v 3 = ( 3 , − 1 , 2 ) \mathbf{v}_3 = (3, -1, 2) v 3 = ( 3 , − 1 , 2 ) .
[ 0 1 3 1 − 1 − 1 1 0 2 ] → R 2 + R 1 [ 0 1 3 1 0 2 1 0 2 ] → R 3 − R 2 [ 0 1 3 1 0 2 0 0 0 ] → R 1 ↔ R 2 [ 1 0 2 0 1 3 0 0 0 ] \begin{array}{c}
\begin{bmatrix}
0 & 1 & 3 \\
1 & -1 & -1 \\
1 & 0 & 2
\end{bmatrix}
&\xrightarrow{R_2 + R_1}
&\begin{bmatrix}
0 & 1 & 3 \\
1 & 0 & 2 \\
1 & 0 & 2
\end{bmatrix}
&\xrightarrow{R_3 - R_2}
&\begin{bmatrix}
0 & 1 & 3 \\
1 & 0 & 2 \\
0 & 0 & 0
\end{bmatrix}
&\xrightarrow{R_1 \leftrightarrow R_2}
&\begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}
\end{array} 0 1 1 1 − 1 0 3 − 1 2 R 2 + R 1 0 1 1 1 0 0 3 2 2 R 3 − R 2 0 1 0 1 0 0 3 2 0 R 1 ↔ R 2 1 0 0 0 1 0 2 3 0
The linear combination of the vectors has free variables. As such, they are linearly dependent.
(ii) v 1 = ( 2 , 1 , 3 ) \mathbf{v}_1 = (2, 1, 3) v 1 = ( 2 , 1 , 3 ) , v 2 = ( 1 , − 2 , 1 ) \mathbf{v}_2 = (1, -2, 1) v 2 = ( 1 , − 2 , 1 ) , v 3 = ( 2 , − 3 , 0 ) \mathbf{v}_3 = (2, -3, 0) v 3 = ( 2 , − 3 , 0 ) and v 4 = ( 0 , − 1 , 4 ) \mathbf{v}_4 = (0, -1, 4) v 4 = ( 0 , − 1 , 4 ) .
The number of vectors (4) is greater than their dimensions (3). As such, they are linearly dependent.
(iii) v 1 = ( 1 , 0 , 2 , 1 ) \mathbf{v}_1 = (1, 0, 2, 1) v 1 = ( 1 , 0 , 2 , 1 ) , v 2 = ( − 2 , 3 , − 1 , 1 ) \mathbf{v}_2 = (-2, 3, -1, 1) v 2 = ( − 2 , 3 , − 1 , 1 ) and v 3 = ( 2 , − 2 , 1 , − 1 ) \mathbf{v}_3 = (2, -2, 1, -1) v 3 = ( 2 , − 2 , 1 , − 1 ) .
rref [ ∣ ∣ ∣ v 1 v 2 v 3 ∣ ∣ ∣ ] = rref [ 1 − 2 2 0 3 − 2 2 − 1 1 1 1 − 1 ] = [ 1 0 0 0 1 0 0 0 1 0 0 0 ] \operatorname{rref}
\left[
\begin{array}{ccc}
| & | & | \\
\mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\
| & | & |
\end{array}
\right] =
\operatorname{rref}
\begin{bmatrix}
1 & -2 & 2 \\
0 & 3 & -2 \\
2 & -1 & 1 \\
1 & 1 & -1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} rref ∣ v 1 ∣ ∣ v 2 ∣ ∣ v 3 ∣ = rref 1 0 2 1 − 2 3 − 1 1 2 − 2 1 − 1 = 1 0 0 0 0 1 0 0 0 0 1 0
The linear combination of the vectors do not have free variables. As such, they are linearly independent.
Where v 1 = ( 0 , 1 , 1 ) \mathbf{v}_1 = (0, 1, 1) v 1 = ( 0 , 1 , 1 ) , v 2 = ( 1 , − 1 , 0 ) \mathbf{v}_2 = (1, -1, 0) v 2 = ( 1 , − 1 , 0 ) , and v 3 = ( 3 , − 1 , 2 ) \mathbf{v}_3 = (3, -1, 2) v 3 = ( 3 , − 1 , 2 ) .
rref [ ∣ ∣ ∣ ∣ v 1 v 2 v 3 w ∣ ∣ ∣ ∣ ] = rref [ 0 1 3 1 1 − 1 − 1 1 1 0 2 1 ] = [ 1 0 2 0 0 1 3 0 0 0 0 1 ] \operatorname{rref}
\left[
\begin{array}{ccc|c}
| & | & | & | \\
\mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{w} \\
| & | & | & |
\end{array}
\right] =
\operatorname{rref}
\left[
\begin{array}{ccc|c}
0 & 1 & 3 & 1 \\
1 & -1 & -1 & 1 \\
1 & 0 & 2 & 1
\end{array}
\right] =
\left[
\begin{array}{ccc|c}
1 & 0 & 2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}
\right] rref ∣ v 1 ∣ ∣ v 2 ∣ ∣ v 3 ∣ ∣ w ∣ = rref 0 1 1 1 − 1 0 3 − 1 2 1 1 1 = 1 0 0 0 1 0 2 3 0 0 0 1
The system has no solution. Therefore, w = ( 1 , 1 , 1 ) \mathbf{w} = (1, 1, 1) w = ( 1 , 1 , 1 ) is not in the span.
(c) For (ii), express v 4 \mathbf{v}_4 v 4 as a linear combination of v 1 \mathbf{v}_1 v 1 , v 2 \mathbf{v}_2 v 2 and v 3 \mathbf{v}_3 v 3 .
Where v 1 = ( 2 , 1 , 3 ) \mathbf{v}_1 = (2, 1, 3) v 1 = ( 2 , 1 , 3 ) , v 2 = ( 1 , − 2 , 1 ) \mathbf{v}_2 = (1, -2, 1) v 2 = ( 1 , − 2 , 1 ) , v 3 = ( 2 , − 3 , 0 ) \mathbf{v}_3 = (2, -3, 0) v 3 = ( 2 , − 3 , 0 ) , and v 4 = ( 0 , − 1 , 4 ) \mathbf{v}_4 = (0, -1, 4) v 4 = ( 0 , − 1 , 4 ) .
rref [ ∣ ∣ ∣ ∣ v 1 v 2 v 3 v 4 ∣ ∣ ∣ ∣ ] = rref [ 2 1 2 0 1 − 2 − 3 − 1 3 1 0 4 ] = [ 1 0 0 2 11 0 1 0 38 11 0 0 1 − 21 11 ] ∴ v 4 = 2 11 v 1 + 38 11 v 2 − 21 11 v 3 \operatorname{rref}
\left[
\begin{array}{ccc|c}
| & | & | & | \\
\mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\
| & | & | & |
\end{array}
\right] =
\operatorname{rref}
\left[
\begin{array}{ccc|c}
2 & 1 & 2 & 0 \\
1 & -2 & -3 & -1 \\
3 & 1 & 0 & 4
\end{array}
\right] =
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & \frac{2}{11} \\[.4em]
0 & 1 & 0 & \frac{38}{11}\\[.4em]
0 & 0 & 1 & -\frac{21}{11}
\end{array}
\right]
\\[1em]
\therefore \mathbf{v}_4 = \frac{2}{11}\mathbf{v}_1 + \frac{38}{11}\mathbf{v}_2 -\frac{21}{11}\mathbf{v}_3 rref ∣ v 1 ∣ ∣ v 2 ∣ ∣ v 3 ∣ ∣ v 4 ∣ = rref 2 1 3 1 − 2 1 2 − 3 0 0 − 1 4 = 1 0 0 0 1 0 0 0 1 11 2 11 38 − 11 21 ∴ v 4 = 11 2 v 1 + 11 38 v 2 − 11 21 v 3
4. Expand the kernel of the following matrices as span of vectors and then compute the dimension.
Assuming the question is asking for the dimension of the kernel i.e., the nullity .
rref [ 1 1 0 1 2 0 1 3 0 ] = [ 1 0 0 0 1 0 0 0 0 ] ∴ ker [ 1 1 1 2 1 3 ] = { ( 0 0 ) } = span { ( 0 0 ) } \operatorname{rref}
\left[
\begin{array}{cc|c}
1 & 1 & 0 \\
1 & 2 & 0 \\
1 & 3 & 0
\end{array}
\right]
= \left[
\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}
\right]
\\[1.2em]
\therefore\ker\begin{bmatrix}
1 & 1 \\
1 & 2 \\
1 & 3
\end{bmatrix} = \Set{\begin{pmatrix}
0 \\ 0
\end{pmatrix}} = \operatorname{span}\Set{
\begin{pmatrix}
0 \\ 0
\end{pmatrix}
} rref 1 1 1 1 2 3 0 0 0 = 1 0 0 0 1 0 0 0 0 ∴ ker 1 1 1 1 2 3 = { ( 0 0 ) } = span { ( 0 0 ) }
The nullity is zero.
rref [ 1 1 1 0 1 1 1 0 1 1 1 0 ] = [ 1 1 1 0 0 0 0 0 0 0 0 0 ] ∴ x 1 = − x 2 − x 3 x 2 , x 3 ∈ R ∴ ker [ 1 1 1 1 1 1 1 1 1 ] = { ( − x 2 − x 3 x 2 x 3 ) : x 2 , x 3 ∈ R } = { x 2 ( − 1 1 0 ) + x 3 ( − 1 0 1 ) : x 2 , x 3 ∈ R } = span { ( − 1 1 0 ) , ( − 1 0 1 ) } \
\operatorname{rref}
\left[
\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}
\right] = \left[
\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\right]
\\
\therefore x_1 = -x_2 - x_3 \\
x_2, x_3 \in\R
\\[1.2em]
\begin{align*}
\therefore\ker\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} &= \Set{
\begin{pmatrix}
-x_2 - x_3 \\
x_2 \\
x_3
\end{pmatrix} : x_2, x_3 \in \R
} \\
&= \Set{
x_2 \begin{pmatrix}
-1 \\ 1 \\ 0
\end{pmatrix} +
x_3 \begin{pmatrix}
-1 \\ 0 \\ 1
\end{pmatrix} : x_2, x_3 \in \R
} \\
&= \operatorname{span}\Set{
\begin{pmatrix}
-1 \\ 1 \\ 0
\end{pmatrix},
\begin{pmatrix}
-1 \\ 0 \\ 1
\end{pmatrix}
}
\end{align*} rref 1 1 1 1 1 1 1 1 1 0 0 0 = 1 0 0 1 0 0 1 0 0 0 0 0 ∴ x 1 = − x 2 − x 3 x 2 , x 3 ∈ R ∴ ker 1 1 1 1 1 1 1 1 1 = ⎩ ⎨ ⎧ − x 2 − x 3 x 2 x 3 : x 2 , x 3 ∈ R ⎭ ⎬ ⎫ = ⎩ ⎨ ⎧ x 2 − 1 1 0 + x 3 − 1 0 1 : x 2 , x 3 ∈ R ⎭ ⎬ ⎫ = span ⎩ ⎨ ⎧ − 1 1 0 , − 1 0 1 ⎭ ⎬ ⎫
The nullity is two.
rref [ 1 − 1 − 1 1 1 0 − 1 1 0 − 2 2 0 1 − 1 − 2 0 3 0 2 − 2 − 1 3 4 0 ] = [ 1 − 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] ∴ x 5 = 0 x 3 = − x 4 x 1 = x 2 − 2 x 4 x 2 , x 4 ∈ R ∴ ker [ 1 − 1 − 1 1 1 − 1 1 0 − 2 2 1 − 1 − 2 0 3 2 − 2 − 1 3 4 ] = { ( x 2 − 2 x 4 x 2 − x 4 x 4 0 ) : x 2 , x 4 ∈ R } = { x 2 ( 1 1 0 0 0 ) + x 4 ( − 2 0 − 1 1 0 ) : x 2 , x 4 ∈ R } = span { ( 1 1 0 0 0 ) , ( − 2 0 − 1 1 0 ) } \operatorname{rref}
\left[
\begin{array}{ccccc|c}
1 & -1 & -1 & 1 & 1 & 0 \\
-1 & 1 & 0 & -2 & 2 & 0 \\
1 & -1 & -2 & 0 & 3 & 0 \\
2 & -2 & -1 & 3 & 4 & 0
\end{array}
\right]
= \left[
\begin{array}{ccccc|c}
1 & -1 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
\right]
\\
\therefore x_5 = 0 \\
x_3 = -x_4 \\
x_1 = x_2 - 2x_4 \\
x_2, x_4 \in \R
\\[1.2em]
\begin{align*}
\therefore\ker\begin{bmatrix}
1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 0 & -2 & 2 \\
1 & -1 & -2 & 0 & 3 \\
2 & -2 & -1 & 3 & 4
\end{bmatrix}
&= \Set{
\begin{pmatrix}
x_2 - 2x_4 \\
x_2 \\
-x_4 \\
x_4 \\
0
\end{pmatrix} : x_2, x_4 \in\R
} \\
&= \Set{
x_2 \begin{pmatrix}
1 \\ 1 \\ 0 \\ 0 \\ 0
\end{pmatrix}
+ x_4 \begin{pmatrix}
-2 \\ 0 \\ -1 \\ 1 \\ 0
\end{pmatrix} : x_2, x_4 \in\R
} \\
&= \operatorname{span}\Set{
\begin{pmatrix}
1 \\ 1 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\begin{pmatrix}
-2 \\ 0 \\ -1 \\ 1 \\ 0
\end{pmatrix}
}
\end{align*} rref 1 − 1 1 2 − 1 1 − 1 − 2 − 1 0 − 2 − 1 1 − 2 0 3 1 2 3 4 0 0 0 0 = 1 0 0 0 − 1 0 0 0 0 1 0 0 2 1 0 0 0 0 1 0 0 0 0 0 ∴ x 5 = 0 x 3 = − x 4 x 1 = x 2 − 2 x 4 x 2 , x 4 ∈ R ∴ ker 1 − 1 1 2 − 1 1 − 1 − 2 − 1 0 − 2 − 1 1 − 2 0 3 1 2 3 4 = ⎩ ⎨ ⎧ x 2 − 2 x 4 x 2 − x 4 x 4 0 : x 2 , x 4 ∈ R ⎭ ⎬ ⎫ = ⎩ ⎨ ⎧ x 2 1 1 0 0 0 + x 4 − 2 0 − 1 1 0 : x 2 , x 4 ∈ R ⎭ ⎬ ⎫ = span ⎩ ⎨ ⎧ 1 1 0 0 0 , − 2 0 − 1 1 0 ⎭ ⎬ ⎫
The nullity is two.
x 1 − x 2 + 2 x 3 − x 4 = 0 ⟹ x 1 = x 2 − 2 x 3 + x 4 W = { ( x 2 − 2 x 3 + x 4 x 2 x 3 x 4 ) : x 2 , x 3 , x 4 ∈ R } = { x 2 ( 1 1 0 0 ) + x 3 ( − 2 0 1 0 ) + x 4 ( 1 0 0 1 ) : x 2 , x 3 , x 4 ∈ R } ∴ basis ( W ) = { ( 1 1 0 0 ) , ( − 2 0 1 0 ) , ( 1 0 0 1 ) } x_1 - x_2 + 2x_3 - x_4 = 0 \implies x_1 = x_2 - 2x_3 + x_4 \\
\begin{align*}
W &= \Set{
\begin{pmatrix}
x_2 - 2x_3 + x_4 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix} : x_2, x_3, x_4 \in \R
} \\
&= \Set{
x_2 \begin{pmatrix}
1 \\ 1 \\ 0 \\ 0
\end{pmatrix}
+ x_3 \begin{pmatrix}
-2 \\0 \\ 1 \\ 0
\end{pmatrix}
+ x_4 \begin{pmatrix}
1 \\ 0 \\ 0 \\ 1
\end{pmatrix} : x_2, x_3, x_4 \in \R
}
\end{align*}
\\[2em]
\therefore \operatorname{basis}(W) = \Set{
\begin{pmatrix}
1 \\ 1 \\ 0 \\ 0
\end{pmatrix}
, \begin{pmatrix}
-2 \\0 \\ 1 \\ 0
\end{pmatrix}
, \begin{pmatrix}
1 \\ 0 \\ 0 \\ 1
\end{pmatrix}
} x 1 − x 2 + 2 x 3 − x 4 = 0 ⟹ x 1 = x 2 − 2 x 3 + x 4 W = ⎩ ⎨ ⎧ x 2 − 2 x 3 + x 4 x 2 x 3 x 4 : x 2 , x 3 , x 4 ∈ R ⎭ ⎬ ⎫ = ⎩ ⎨ ⎧ x 2 1 1 0 0 + x 3 − 2 0 1 0 + x 4 1 0 0 1 : x 2 , x 3 , x 4 ∈ R ⎭ ⎬ ⎫ ∴ basis ( W ) = ⎩ ⎨ ⎧ 1 1 0 0 , − 2 0 1 0 , 1 0 0 1 ⎭ ⎬ ⎫
6. Let W = { ( x 1 , x 2 , x 3 , x 4 ) : { x 1 + x 2 − x 3 + x 4 = 0 , 2 x 1 + 2 x 2 − 2 x 3 + x 4 = 0 , } W = \Set{(x_1, x_2, x_3, x_4) :\begin{cases}x_1 + x_2 - x_3 + x_4 = 0, \\2x_1 + 2x_2 - 2x_3 + x_4 = 0,\end{cases}} W = { ( x 1 , x 2 , x 3 , x 4 ) : { x 1 + x 2 − x 3 + x 4 = 0 , 2 x 1 + 2 x 2 − 2 x 3 + x 4 = 0 , } . Find a basis for the subspace W W W and what is its dimension?
{ x 1 + x 2 − x 3 + x 4 = 0 2 x 1 + 2 x 2 − 2 x 3 + x 4 = 0 ⟺ [ 1 1 − 1 1 0 2 2 − 2 1 0 ] [ 1 1 − 1 1 0 2 2 − 2 1 0 ] → R 2 − 2 R 1 [ 1 1 − 1 1 0 0 0 0 − 1 0 ] → − R 2 R 1 + R 2 [ 1 1 − 1 0 0 0 0 0 1 0 ] ∴ x 4 = 0 x 1 = − x 2 + x 3 x 2 , x 3 ∈ R W = { ( − x 2 + x 3 x 2 x 3 0 ) : x 2 , x 3 ∈ R } = { x 2 ( − 1 1 0 0 ) + x 3 ( 1 0 1 0 ) : x 2 , x 3 ∈ R } ∴ basis ( W ) = { ( − 1 1 0 0 ) , ( 1 0 1 0 ) } \begin{array}{c}
\begin{cases}
x_1 + x_2 - x_3 + x_4 = 0 \\
2x_1 + 2x_2 - 2x_3 + x_4 = 0
\end{cases}
&\iff&
\left[
\begin{array}{cccc|c}
1 & 1 & -1 & 1 & 0 \\
2 & 2 & -2 & 1 & 0
\end{array}
\right]
\end{array}
\\[2em]
\begin{array}{c}
\left[
\begin{array}{cccc|c}
1 & 1 & -1 & 1 & 0 \\
2 & 2 & -2 & 1 & 0
\end{array}
\right]
&\xrightarrow{R_2 - 2R_1}
&\left[
\begin{array}{cccc|c}
1 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}
\right]
&\xrightarrow[-R_2]{R_1 + R_2}
&\left[
\begin{array}{cccc|c}
1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}
\right]
\end{array}
\\
\therefore x_4 = 0 \\
x_1 = -x_2 + x_3 \\
x_2, x_3 \in \R
\\
\begin{align*}
W &= \Set{
\begin{pmatrix}
-x_2 + x_3 \\
x_2 \\
x_3 \\
0
\end{pmatrix} : x_2, x_3 \in \R
} \\
&= \Set{
x_2 \begin{pmatrix}
-1 \\ 1 \\ 0 \\ 0
\end{pmatrix}
+ x_3 \begin{pmatrix}
1 \\ 0 \\ 1 \\ 0
\end{pmatrix}: x_2, x_3 \in \R
}
\end{align*}
\\[2em]
\therefore\operatorname{basis}(W) = \Set{
\begin{pmatrix}
-1 \\ 1 \\ 0 \\ 0
\end{pmatrix},
\begin{pmatrix}
1 \\ 0 \\ 1 \\ 0
\end{pmatrix}
} { x 1 + x 2 − x 3 + x 4 = 0 2 x 1 + 2 x 2 − 2 x 3 + x 4 = 0 ⟺ [ 1 2 1 2 − 1 − 2 1 1 0 0 ] [ 1 2 1 2 − 1 − 2 1 1 0 0 ] R 2 − 2 R 1 [ 1 0 1 0 − 1 0 1 − 1 0 0 ] R 1 + R 2 − R 2 [ 1 0 1 0 − 1 0 0 1 0 0 ] ∴ x 4 = 0 x 1 = − x 2 + x 3 x 2 , x 3 ∈ R W = ⎩ ⎨ ⎧ − x 2 + x 3 x 2 x 3 0 : x 2 , x 3 ∈ R ⎭ ⎬ ⎫ = ⎩ ⎨ ⎧ x 2 − 1 1 0 0 + x 3 1 0 1 0 : x 2 , x 3 ∈ R ⎭ ⎬ ⎫ ∴ basis ( W ) = ⎩ ⎨ ⎧ − 1 1 0 0 , 1 0 1 0 ⎭ ⎬ ⎫
The nullity is two.