Homework 7

1. Find the determinant of the matrices using Gaussian elimination.

(a) [203131011]\begin{bmatrix} 2 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 1 & 1\end{bmatrix}

det[203131011]=R2R3203120011=R1R2(1)120203011=R22R1(1)120043011=R2+5R1(1)120018011=R3R2(1)120018007=(1)(117)=7\begin{align*} \det\begin{bmatrix} 2 & 0 & 3 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix} &\overset{R_2-R_3}{=} \begin{vmatrix} 2 & 0 & 3 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{vmatrix} \\ &\overset{R_1\leftrightarrow R_2}{=} (-1)\begin{vmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & 1 \end{vmatrix} \\ &\overset{R_2 - 2R_1}{=} (-1)\begin{vmatrix} 1 & 2 & 0 \\ 0 & -4 & 3 \\ 0 & 1 & 1 \end{vmatrix} \\ &\overset{R_2 + 5R_1}{=} (-1)\begin{vmatrix} 1 & 2 & 0 \\ 0 & 1 & 8 \\ 0 & 1 & 1 \end{vmatrix} \\ &\overset{R_3 - R_2}{=} (-1)\begin{vmatrix} 1 & 2 & 0 \\ 0 & 1 & 8 \\ 0 & 0 & -7 \end{vmatrix} \\ &= (-1)(1\cdot1\cdot-7) \\ &= 7 \end{align*}

(b) [012113220]\begin{bmatrix} 0 & 1 & 2 \\ −1 & 1 & 3 \\ 2 & −2 & 0\end{bmatrix}

det[012113220]=R1R2(1)113012220=R3+2R2(1)113012006=(1)(116)=6\begin{align*} \det\begin{bmatrix} 0 & 1 & 2 \\ −1 & 1 & 3 \\ 2 & −2 & 0 \end{bmatrix} &\overset{R_1\leftrightarrow R_2}{=} (-1) \begin{vmatrix} −1 & 1 & 3 \\ 0 & 1 & 2 \\ 2 & −2 & 0 \end{vmatrix} \\ &\overset{R_3 + 2R_2}{=} (-1) \begin{vmatrix} −1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{vmatrix} \\ &= (-1) (-1\cdot1\cdot6) \\ &= 6 \end{align*}

(c) [1111111012022021]\begin{bmatrix}1 & −1 & 1 & 1\\1 & −1 & −1 & 0\\1 & 2 & 0 & −2\\2 & 0 & 2 & 1\end{bmatrix}

det[1111111012022021]=R2R11111002112022021=R3R11111002103132021=R42R11111002103130201=R2R3(1)1111031300210201=23R2(32)11110223200210201=R4R2(32)111102232002100231=13R3(92)11110223200231300231=R4+R3(92)11110223200231300023=(92)(122323)=4\begin{align*} \det\begin{bmatrix} 1 & −1 & 1 & 1 \\ 1 & −1 & −1 & 0 \\ 1 & 2 & 0 & −2 \\ 2 & 0 & 2 & 1 \end{bmatrix} &\overset{R_2 - R_1}{=} \begin{vmatrix} 1 & −1 & 1 & 1 \\ 0 & 0 & -2 & -1 \\ 1 & 2 & 0 & −2 \\ 2 & 0 & 2 & 1 \end{vmatrix} \\ &\overset{R_3 - R_1}{=} \begin{vmatrix} 1 & −1 & 1 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 3 & -1 & −3 \\ 2 & 0 & 2 & 1 \end{vmatrix} \\ &\overset{R_4 - 2R_1}{=} \begin{vmatrix} 1 & −1 & 1 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 3 & -1 & −3 \\ 0 & 2 & 0 & -1 \end{vmatrix} \\ &\overset{R_2\leftrightarrow R_3}{=} (-1) \begin{vmatrix} 1 & −1 & 1 & 1 \\ 0 & 3 & -1 & −3 \\ 0 & 0 & -2 & -1 \\ 0 & 2 & 0 & -1 \end{vmatrix} \\ &\overset{\frac{2}{3}R_2}{=} \left(-\frac{3}{2}\right) \begin{vmatrix} 1 & −1 & 1 & 1 \\ 0 & 2 & -\frac{2}{3} & -2 \\ 0 & 0 & -2 & -1 \\ 0 & 2 & 0 & -1 \end{vmatrix} \\ &\overset{R_4 - R_2}{=} \left(-\frac{3}{2}\right) \begin{vmatrix} 1 & −1 & 1 & 1 \\ 0 & 2 & -\frac{2}{3} & -2 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & \frac{2}{3} & 1 \end{vmatrix} \\ &\overset{\frac{1}{3}R_3}{=} \left(-\frac{9}{2}\right) \begin{vmatrix} 1 & −1 & 1 & 1 \\[.5em] 0 & 2 & -\frac{2}{3} & -2 \\[.5em] 0 & 0 & -\frac{2}{3} & -\frac{1}{3} \\[.5em] 0 & 0 & \frac{2}{3} & 1 \end{vmatrix} \\ &\overset{R_4 + R_3}{=} \left(-\frac{9}{2}\right) \begin{vmatrix} 1 & −1 & 1 & 1 \\[.5em] 0 & 2 & -\frac{2}{3} & -2 \\[.5em] 0 & 0 & -\frac{2}{3} & -\frac{1}{3} \\[.5em] 0 & 0 & 0 & \frac{2}{3} \end{vmatrix} \\ &= \left(-\frac{9}{2}\right)\left(1\cdot2\cdot-\frac{2}{3}\cdot\frac{2}{3}\right) \\ &= 4 \end{align*}

(d)[2111112111112111112111112]\begin{bmatrix}2 & 1 & 1 & 1 & 1 \\1 & 2 & 1 & 1 & 1 \\1 & 1 & 2 & 1 & 1 \\1 & 1 & 1 & 2 & 1 \\1 & 1 & 1 & 1 & 2\end{bmatrix}

det[2111112111112111112111112]=R1R2(1)1211121111112111112111112=R22R1(1)1211103111112111112111112=R3R1R4R1R5R1(1)1211103111011000101001001=R2R31211101100031110101001001=R33R21211101100004110101001001=R4R2R5R21211101100004110011000101=R3R4(1)1211101100001100041100101=R44R3(1)1211101100001100005100101=R5R3(1)1211101100001100005100011=R4R51211101100001100001100051=R55R41211101100001100001100006=11116=6\begin{align*} \det\begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix} &\overset{R_1\leftrightarrow R_2}{=} (-1)\begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{vmatrix} \\ &\overset{R_2 - 2R_1}{=} (-1)\begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -3 & -1 & -1 & -1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{vmatrix} \\ &\overset{\substack{R_3 - R_1 \\ R_4 - R_1 \\ R_5 - R_1}}{=} (-1)\begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -3 & -1 & -1 & -1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{vmatrix} \\ &\overset{R_2\leftrightarrow R_3}{=} \begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & -3 & -1 & -1 & -1 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{vmatrix} \\ &\overset{R_3 - 3R_2}{=} \begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -4 & -1 & -1 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{vmatrix} \\ &\overset{\substack{R_4 - R_2 \\ R_5 - R_2}}{=} \begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -4 & -1 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \end{vmatrix} \\ &\overset{R_3 \leftrightarrow R_4}{=} (-1)\begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -4 & -1 & -1 \\ 0 & 0 & -1 & 0 & 1 \end{vmatrix} \\ &\overset{R_4 - 4R_3}{=} (-1)\begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -5 & -1 \\ 0 & 0 & -1 & 0 & 1 \end{vmatrix} \\ &\overset{R_5 - R_3}{=} (-1)\begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -5 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{vmatrix} \\ &\overset{R_4 \leftrightarrow R_5}{=} \begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -5 & -1 \\ \end{vmatrix} \\ &\overset{R_5 - 5R_4}{=} \begin{vmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -6 \\ \end{vmatrix} \\ &= 1\cdot-1\cdot-1\cdot-1\cdot-6 \\ &= 6 \end{align*}

2. Given 5×55\times5 matrices AA, BB, QQ. Suppose that detA=3\det A = 3, detB=2\det B = 2 and QQ is an invertible matrix. Find the determinant of ATBA^TB, A3A^3, 2A2A, ABAABA and Q1AQQ^{−1}AQ.

detATB\det A^T B

detATB=detATdetB=detAdetB=32=6\begin{align*} \det A^T B &= \det A^T \det B \\ &= \det A \det B \\ &= 3\cdot 2 \\ &= 6 \end{align*}

detA3\det A^3

detA3=detAAA=detAdetAdetA=333=27\begin{align*} \det A^3 &= \det AAA \\ &= \det A \det A \det A \\ &= 3\cdot3\cdot3 \\ &= 27 \end{align*}

det2A\det 2A

det2A=det2(a11a55),aijR=det(2a112a55),aijR=25det(a11a55),aijR=25detA=323=96\begin{align*} \det 2A &= \det 2\begin{pmatrix} a_{11} & & \\ &\ddots& \\ & & a_{55} \end{pmatrix}, & a_{ij} \in \R \\ &= \det \begin{pmatrix} 2a_{11} & & \\ &\ddots& \\ & & 2a_{55} \end{pmatrix}, & a_{ij} \in \R \\ &= 2^5 \det \begin{pmatrix} a_{11} & & \\ &\ddots& \\ & & a_{55} \end{pmatrix}, & a_{ij} \in \R \\ &= 2^5 \det A \\ &= 32 \cdot 3 \\ &= 96 \end{align*}

detABA\det ABA

detABA=detAdetBdetA=323=18\begin{align*} \det ABA &= \det A \det B \det A \\ &= 3 \cdot 2 \cdot 3 \\ &= 18 \end{align*}

detQ1AQ\det Q^{-1}AQ

detQ1AQ=detQ1detAdetQ=1detQdetAdetQ=detA=3\begin{align*} \det Q^{-1}AQ &= \det Q^{-1} \det A \det Q \\ &= \frac{1}{\det Q} \det A \det Q \\ &= \det A \\ &= 3 \end{align*}

3. Consider the following system of linear equations: {px+y+z=6,3xy+11z=6,2x+y+4z=q,\begin{cases} px + y + z = 6, \\ 3x − y + 11z = 6, \\ 2x + y + 4z = q,\end{cases}

(a) Find the condition on pp so that the system has unique solution (Hint: det(A)0\det(A) \neq 0).

{px+y+z3xy+11z2x+y+4z    (p113111214)det(p113111214)=p1111431124+3121=p(411)(1222)+(3(2))=15p+15det(p113111214)0    p1\begin{cases} px + y + z \\ 3x − y + 11z \\ 2x + y + 4z \end{cases} \iff \begin{pmatrix} p & 1 & 1 \\ 3 & -1 & 11 \\ 2 & 1 & 4 \end{pmatrix} \\ \begin{align*} \det \begin{pmatrix} p & 1 & 1 \\ 3 & -1 & 11 \\ 2 & 1 & 4 \end{pmatrix} &= p \begin{vmatrix} -1 & 11 \\ 1 & 4 \end{vmatrix} - \begin{vmatrix} 3 & 11 \\ 2 & 4 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} \\ &= p(-4-11) - (12-22) + (3-(-2)) \\ &= -15p + 15 \end{align*} \\ \therefore \det\begin{pmatrix} p & 1 & 1 \\ 3 & -1 & 11 \\ 2 & 1 & 4 \end{pmatrix} \neq 0 \iff p \neq 1

As such, the system has unique solution for all p1p\neq1.

(b) Find the condition on pp and qq so that the system has infinitely many solutions (Hint: det(A)=0\det(A) = 0 and no inconsistent equations). Describe the solution set.

{px+y+z=63xy+11z=62x+y+4z=q    (p11631116214q)\begin{cases} px + y + z = 6 \\ 3x − y + 11z = 6 \\ 2x + y + 4z = q \end{cases} \iff \left( \begin{array}{ccc|c} p & 1 & 1 & 6 \\ 3 & -1 & 11 & 6 \\ 2 & 1 & 4 & q \end{array} \right)

From (a), we know that det(p113111214)=0    p=1\det\begin{pmatrix} p & 1 & 1 \\ 3 & -1 & 11 \\ 2 & 1 & 4 \end{pmatrix} = 0 \iff p = 1. So, we can just Gaussian with p=1p=1.

(111631116214q)R32R1R23R1(111604812012q12)14R2(11160123012q12)R3+R2(11160123000q9)\begin{array}{c} \left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 3 & -1 & 11 & 6\\ 2 & 1 & 4 & q \end{array} \right) &\xrightarrow[R_3 - 2R_1]{R_2 - 3R_1} &\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & -4 & 8 & -12 \\ 0 & -1 & 2 & q-12 \end{array} \right) \\ &\xrightarrow{-\frac{1}{4}R_2} &\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -2 & 3 \\ 0 & -1 & 2 & q-12 \end{array} \right) \\ &\xrightarrow{R_3 + R_2} &\left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & q-9 \end{array} \right) \end{array}

Here, we see that the last row is 0=q90 = q-9. As such, the system will have a consistent solution if and only if q=9q=9.

To get the solution set, we continue to Gaussian to obtain the reduced-row echelon form.

(11160123000q9)R1R2(10330123000q9)y=2z+3x=3z+3\begin{array}{c} \left( \begin{array}{ccc|c} 1 & 1 & 1 & 6 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & q-9 \end{array} \right) &\xrightarrow{R_1 - R_2} &\left( \begin{array}{ccc|c} 1 & 0 & 3 & 3 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & q-9 \end{array} \right) \end{array} \\ \therefore y = 2z + 3 \\ x = -3z + 3

Therefore, the system

{px+y+z=63xy+11z=62x+y+4z=q\begin{cases} px + y + z = 6 \\ 3x − y + 11z = 6 \\ 2x + y + 4z = q \end{cases}

contains infinitely many solutions if and only if p=1p=1 and q=9q=9, for which its solution set is

{(x,y,z):(3z+32z+3z):zR}.\Set{ (x,y,z): \begin{pmatrix} -3z + 3 \\ 2z + 3 \\ z \end{pmatrix}: z\in\R }.

4. Show that if AA is an n×nn \times n skew-symmetric matrix (i.e. AT=AA^T = −A) and nn is an odd number, then detA=0\det A = 0.

Given that detAT=detA\det A^T = \det A. Then if AT=AA^T = -A (AA is skew-symmetric), we have that:

detAT=detA=det(A)\det A^T = \det A = \det (-A)

If nn is odd, then n=k+1n=k+1 for kNk\in\N. As such:

det(A)=det1(a11ann),aijR=det((1)a11(1)ann),aijR=(1)ndet(a11ann),aijR=(1)k+1detAn=k+1=detA(1)k+1=1kN\begin{align*} \det(-A) &= \det -1\cdot\begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix}, &a_{ij}\in\R \\ &= \det\begin{pmatrix} (-1)a_{11} & & \\ & \ddots & \\ & & (-1)a_{nn} \end{pmatrix}, &a_{ij}\in\R \\ &= (-1)^n\det\begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix}, &a_{ij}\in\R \\ &= (-1)^{k+1}\det A & \boxed{n=k+1}\\ &= -\det A & \boxed{(-1)^{k+1} = -1\quad\forall k\in\N} \end{align*}

Since detAT=detA=det(A)=detA\det A^T = \det A = \det(-A) = -\det A. Then, detA=detA    detA=0\det A = -\det A \iff \det A = 0.

5. Let A=[1342],B=[023111225].A = \begin{bmatrix} 1 & 3 \\ 4 & 2\end{bmatrix},\quad B =\begin{bmatrix} 0 & −2 & −3 \\ −1 & 1 & −1 \\ 2 & 2 & 5\end{bmatrix}.

(i) Find the eigenvalues and eigenvectors of both AA and BB.

Eigenvalues and eigenvectors for AA

det(AλI)=1λ342λ=0=(1λ)(2λ)12=0=λ23λ10=0=(λ+2)(λ5)=0λ=2,5\begin{align*} \det (A-\lambda I) &= \begin{vmatrix} 1-\lambda & 3 \\ 4 & 2-\lambda \end{vmatrix} &= 0 \\ &= (1-\lambda)(2-\lambda) - 12 &= 0 \\ &= \lambda^2 - 3\lambda - 10 &= 0 \\ &= (\lambda + 2)(\lambda - 5) &= 0 \end{align*} \\ \therefore\lambda = -2, 5

The eigenvalues of AA are 2-2 and 55.

λ=2    A+2IA+2I=[3344]    rref(A+2I)=[1100]x1=x2x2Rker(A+2I)={(x2x2):x2R}={x(11):xR}\lambda = -2 \implies A+2I \\ A + 2I = \begin{bmatrix} 3 & 3 \\ 4 & 4 \end{bmatrix} \implies\operatorname{rref}(A+2I) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \\ \therefore x_1 = -x_2 \\ x_2\in\R \\ \therefore\ker(A+2I) = \Set{ \begin{pmatrix} -x_2 \\ x_2 \end{pmatrix}: x_2\in\R } = \Set{ x\begin{pmatrix} -1 \\ 1 \end{pmatrix}: x\in\R }

An eigenvector corresponding to λ=2\lambda=-2 is (11)\begin{pmatrix} -1 \\ 1 \end{pmatrix}.

λ=5    A5IA5I=[4343]    rref(A5I)=[13400]x1=34x2x2Rker(A5I)={(34x2x2):x2R}={x(341):xR}\lambda = 5 \implies A - 5I \\ A - 5I = \begin{bmatrix} -4 & 3 \\ 4 & -3 \end{bmatrix} \implies \operatorname{rref}(A-5I) = \begin{bmatrix} 1 & -\frac{3}{4} \\ 0 & 0 \end{bmatrix} \\ \therefore x_1 = \frac{3}{4}x_2 \\ x_2 \in\R \\ \therefore\ker(A-5I) = \Set{ \begin{pmatrix} \frac{3}{4}x_2 \\ x_2 \end{pmatrix}: x_2 \in\R } = \Set{ x\begin{pmatrix} \frac{3}{4} \\[.2em] 1 \end{pmatrix}: x\in\R }

An eigenvector corresponding to λ=5\lambda=5 is (341)\begin{pmatrix} \frac{3}{4} \\[.2em] 1 \end{pmatrix}.

Eigenvalues and eigenvectors for BB

det(BλI)=λ2311λ1225λ=0=λ1λ125λ(2)1125λ+(3)11λ22=0=λ(λ26λ+7)(2)(λ3)+(3)(2λ4)=0=λ3+6λ211λ+6=0=(λ3)(λ2)(λ1)=0λ=1,2,3\begin{align*} \det(B-\lambda I) &= \begin{vmatrix} -\lambda & −2 & −3 \\ −1 & 1-\lambda & −1 \\ 2 & 2 & 5-\lambda \end{vmatrix} &= 0 \\ &= -\lambda \begin{vmatrix} 1-\lambda & −1 \\ 2 & 5-\lambda \end{vmatrix} - (-2) \begin{vmatrix} −1 & −1 \\ 2 & 5-\lambda \end{vmatrix} + (-3) \begin{vmatrix} −1 & 1-\lambda \\ 2 & 2 \end{vmatrix} &= 0 \\ &= -\lambda(\lambda^2 - 6\lambda + 7) -(-2)(\lambda-3) + (-3)(2\lambda-4) &= 0 \\ &= -\lambda^3 + 6\lambda^2 - 11\lambda + 6 &= 0 \\ &= -(\lambda-3)(\lambda-2)(\lambda-1) &= 0 \end{align*} \\ \therefore \lambda = 1,2,3

The eigenvalues of BB are 11, 22, and 33.

λ=1    BIBI=[123101224]    rref(BI)=[101011000]x2=x3x1=x3x3Rker(BI)={(x3x3x3):x3R}={x(111):xR}\lambda=1 \implies B-I \\ B-I = \begin{bmatrix} -1 & −2 & −3 \\ −1 & 0 & −1 \\ 2 & 2 & 4 \end{bmatrix} \implies\operatorname{rref}(B-I) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \\ \therefore x_2 = -x_3 \\ x_1 = -x_3 \\ x_3 \in\R \\ \therefore\ker(B-I) = \Set{ \begin{pmatrix} -x_3 \\ -x_3 \\ x_3 \end{pmatrix}: x_3 \in\R } = \Set{ x\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}: x\in\R }

An eigenvector corresponding to λ=1\lambda=1 is (111)\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.

λ=2    B2IB2I=[223111223]    rref(B2I)=[110001000]x3=0x1=x2x2Rker(B2I)={(x2x20):x2R}={x(110):xR}\lambda=2 \implies B-2I \\ B-2I = \begin{bmatrix} -2 & −2 & −3 \\ −1 & -1 & −1 \\ 2 & 2 & 3 \end{bmatrix} \implies\operatorname{rref}(B-2I) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \\ \therefore x_3 = 0 \\ x_1 = -x_2 \\ x_2 \in\R \\ \therefore\ker(B-2I) = \Set{ \begin{pmatrix} -x_2 \\ x_2 \\ 0 \end{pmatrix}: x_2 \in\R } = \Set{ x\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}: x\in\R }

An eigenvector corresponding to λ=2\lambda=2 is (110)\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.
λ=3    B3IB3I=[323121222]    rref(B3I)=[101010000]x2=0x1=x3x3Rker(B3I)={(x30x3):x2R}={x(101):xR}\lambda=3 \implies B-3I \\ B-3I = \begin{bmatrix} -3 & −2 & −3 \\ −1 & -2 & −1 \\ 2 & 2 & 2 \end{bmatrix} \implies\operatorname{rref}(B-3I) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \therefore x_2 = 0 \\ x_1 = -x_3 \\ x_3\in\R \\ \therefore\ker(B-3I) = \Set{ \begin{pmatrix} -x_3 \\ 0 \\ x_3 \end{pmatrix}: x_2 \in\R } = \Set{ x\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}: x\in\R }

An eigenvector corresponding to λ=3\lambda=3 is (101)\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.

(ii) Diagonalize AA and BB.

Diagonalizing AA

For eigenvalues λA1=2\lambda_{A1}=-2 and λA2=5\lambda_{A2}=5, the diagonalization of A=[1342]A= \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} is

P1AP=(2005)P^{-1}AP = \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}

where PP is a matrix composed of the corresponding eigenvectors of AA such that

P=(13411).P = \begin{pmatrix} -1 & \frac{3}{4} \\[.2em] 1 & 1 \end{pmatrix}.

Diagonalizing BB

For eigenvalues λB1=1\lambda_{B1}=1, λB2=2\lambda_{B2}=2, and λB3=3\lambda_{B3}=3, the diagonalization of B=[023111225]B=\begin{bmatrix} 0 & −2 & −3 \\ −1 & 1 & −1 \\ 2 & 2 & 5 \end{bmatrix} is

Q1BQ=(100020003)Q^{-1}BQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}

where QQ is a matrix composed of the corresponding eigenvectors of BB such that

Q=(111 110101).Q = \begin{pmatrix} -1 & -1 & -1 \\\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.

(iii) Find A10A^{10} and B3B^3.

Finding A10A^{10}

P=(13411)    P1=17(4344)P1A10P=(2005)10A10=P(2005)10P1=(13411)(2005)1017(4344)=(4 185 8534 184 8295 579 7725 580 796)P = \begin{pmatrix} -1 & \frac{3}{4} \\[.2em] 1 & 1 \end{pmatrix} \implies P^{-1} = \frac{1}{7} \begin{pmatrix} -4 & 3 \\ 4 & 4 \end{pmatrix} \\ P^{-1}A^{10}P = \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}^{10} \\ \begin{align*} \therefore A^{10} &= P\begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}^{10} P^{-1} \\ &= \begin{pmatrix} -1 & \frac{3}{4} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}^{10} \frac{1}{7} \begin{pmatrix} -4 & 3 \\ 4 & 4 \end{pmatrix} \\ &= \begin{pmatrix} 4\ 185\ 853 & 4\ 184\ 829 \\ 5\ 579\ 772 & 5\ 580\ 796 \end{pmatrix} \end{align*}

Finding B3B^3

Q=(111110101)    Q1=(111101112)Q1B3Q=(100020003)3B3=Q(100020003)3Q1=(111110101)(100020003)3(111101112)=(182645717262653)Q = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \implies Q^{-1} = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \\ Q^{-1}B^3 Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^3 \\ \begin{align*} \therefore B^3 &= Q\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^3Q^{-1} \\ &= \begin{pmatrix} -1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^3 \begin{pmatrix} -1 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -18 & -26 & -45 \\ -7 & 1 & -7 \\ 26 & 26 & 53 \end{pmatrix} \end{align*}

Homework 7

  1. Find the determinant of the matrices using Gaussian elimination.
  1. Given 5×55\times5 matrices AA, BB, QQ. Suppose that detA=3\det A = 3, detB=2\det B = 2 and QQ is an invertible matrix. Find the determinant of ATBA^TB, A3A^3, 2A2A, ABAABA and Q1AQQ^{−1}AQ.
  1. Consider the following system of linear equations: {px+y+z=6,3xy+11z=6,2x+y+4z=q,\begin{cases} px + y + z = 6, \\ 3x − y + 11z = 6, \\ 2x + y + 4z = q,\end{cases}
  1. Let A=[1342],B=[023111225].A = \begin{bmatrix} 1 & 3 \\ 4 & 2\end{bmatrix},\quad B =\begin{bmatrix} 0 & −2 & −3 \\ −1 & 1 & −1 \\ 2 & 2 & 5\end{bmatrix}.