Homework 8
1. Find the algebraic and geometric multiplicity of the eigenvalues of the following matrices. A = [ 1 1 − 1 1 2 0 2 1 1 3 0 0 3 0 1 0 0 0 4 − 1 0 0 0 0 − 1 ] , B = [ 1 1 1 0 1 1 0 0 2 ] A = \begin{bmatrix} 1 & 1 & −1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & −1 \\ 0 & 0 & 0 & 0 & −1\end{bmatrix},\quad B = \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2\end{bmatrix} A = 1 0 0 0 0 1 2 0 0 0 − 1 1 3 0 0 1 1 0 4 0 2 3 1 − 1 − 1 , B = 1 0 0 1 1 0 1 1 2 Are they diagonalizable? Explain.
For A = [ 1 1 − 1 1 2 0 2 1 1 3 0 0 3 0 1 0 0 0 4 − 1 0 0 0 0 − 1 ] A = \begin{bmatrix} 1 & 1 & −1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & −1 \\ 0 & 0 & 0 & 0 & −1\end{bmatrix} A = 1 0 0 0 0 1 2 0 0 0 − 1 1 3 0 0 1 1 0 4 0 2 3 1 − 1 − 1
A − λ I = [ 1 − λ 1 − 1 1 2 0 2 − λ 1 1 3 0 0 3 − λ 0 1 0 0 0 4 − λ − 1 0 0 0 0 − 1 − λ ] det ( A − λ I ) = ( 1 − λ ) ( 2 − λ ) ( 3 − λ ) ( 4 − λ ) ( − 1 − λ ) = 0 ∴ λ = − 1 , 1 , 2 , 3 , 4 A-\lambda I = \begin{bmatrix}
1-\lambda & 1 & −1 & 1 & 2 \\
0 & 2-\lambda & 1 & 1 & 3 \\
0 & 0 & 3-\lambda & 0 & 1 \\
0 & 0 & 0 & 4-\lambda & −1 \\
0 & 0 & 0 & 0 & −1-\lambda
\end{bmatrix} \\
\det(A-\lambda I) =
(1-\lambda)(2-\lambda)(3-\lambda)(4-\lambda)(−1-\lambda) = 0 \\
\therefore\lambda= -1, 1, 2, 3, 4 A − λ I = 1 − λ 0 0 0 0 1 2 − λ 0 0 0 − 1 1 3 − λ 0 0 1 1 0 4 − λ 0 2 3 1 − 1 − 1 − λ det ( A − λ I ) = ( 1 − λ ) ( 2 − λ ) ( 3 − λ ) ( 4 − λ ) ( − 1 − λ ) = 0 ∴ λ = − 1 , 1 , 2 , 3 , 4
By observation, we can see that there are no repeated roots in the characteristic polynomial. As such, the algebraic multiplicity of all five eigenvalues are 1 1 1 .
For λ 1 = − 1 \lambda_1=-1 λ 1 = − 1 ,
rref ( A − ( − 1 ) I ) = [ 1 0 0 0 11 15 0 1 0 0 59 60 0 0 1 0 1 4 0 0 0 1 − 1 5 0 0 0 0 0 ] \operatorname{rref} (A-(-1) I) = \begin{bmatrix}
1 & 0 & 0 & 0 & \frac{11}{15} \\[.5em]
0 & 1 & 0 & 0 & \frac{59}{60} \\[.5em]
0 & 0 & 1 & 0 & \frac{1}{4} \\[.5em]
0 & 0 & 0 & 1 & -\frac{1}{5} \\[.5em]
0 & 0 & 0 & 0 & 0
\end{bmatrix} rref ( A − ( − 1 ) I ) = 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 15 11 60 59 4 1 − 5 1 0
There’s one free variable, so the geometric multiplicity for λ 1 = − 1 \lambda_1 = -1 λ 1 = − 1 is 1 1 1 (because the nullity i.e., dim ker ( A − λ ) \dim\ker (A-\lambda) dim ker ( A − λ ) is 1 1 1 ).
And similarly for λ 2 , λ 3 , λ 4 , λ 5 \lambda_2,\lambda_3,\lambda_4,\lambda_5 λ 2 , λ 3 , λ 4 , λ 5 , we find that they all have one free variable.
λ 2 = 1 λ 3 = 2 λ 4 = 3 λ 5 = 4 rref ( A − I ) rref ( A − 2 I ) rref ( A − 3 I ) rref ( A − 4 I ) [ 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ] [ 1 − 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ] [ 1 0 0 0 0 0 1 − 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ] [ 1 0 0 − 1 2 0 0 1 0 − 1 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 ] \begin{array}{c}
\lambda_2 = 1 &
\lambda_3 = 2 &
\lambda_4 = 3 &
\lambda_5 = 4 & \\
\operatorname{rref}(A-I) &
\operatorname{rref}(A-2I) &
\operatorname{rref}(A-3I) &
\operatorname{rref}(A-4I) \\
\\ \hline \\
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} &
\begin{bmatrix}
1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} &
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} &
\begin{bmatrix}
1 & 0 & 0 & -\frac{1}{2} & 0 \\[.2em]
0 & 1 & 0 & -\frac{1}{2} & 0 \\[.2em]
0 & 0 & 1 & 0 & 0 \\[.2em]
0 & 0 & 0 & 0 & 1 \\[.2em]
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\end{array} λ 2 = 1 rref ( A − I ) 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 λ 3 = 2 rref ( A − 2 I ) 1 0 0 0 0 − 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 λ 4 = 3 rref ( A − 3 I ) 1 0 0 0 0 0 1 0 0 0 0 − 1 0 0 0 0 0 1 0 0 0 0 0 1 0 λ 5 = 4 rref ( A − 4 I ) 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 − 2 1 − 2 1 0 0 0 0 0 0 1 0
As such, the geometric multiplicity of all five eigenvalues are also 1 1 1 .
Since the algebraic and geometric multiplicity are the same for all five eigenvalues (all one), A A A is diagonalizable.
For B = [ 1 1 1 0 1 1 0 0 2 ] B = \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2\end{bmatrix} B = 1 0 0 1 1 0 1 1 2
B − λ I = [ 1 − λ 1 1 0 1 − λ 1 0 0 2 − λ ] det ( B − λ I ) = ( 1 − λ ) ( 1 − λ ) ( 2 − λ ) = 0 = ( 1 − λ ) 2 ( 2 − λ ) = 0 ∴ λ = 1 , 2 B-\lambda I = \begin{bmatrix}
1-\lambda & 1 & 1 \\
0 & 1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{bmatrix} \\
\begin{align*}
\det(B-\lambda I) &=
(1-\lambda)(1-\lambda)(2-\lambda) &= 0 \\
&= (1-\lambda)^2(2-\lambda) &= 0
\end{align*}
\\
\therefore\lambda=1,2 B − λ I = 1 − λ 0 0 1 1 − λ 0 1 1 2 − λ det ( B − λ I ) = ( 1 − λ ) ( 1 − λ ) ( 2 − λ ) = ( 1 − λ ) 2 ( 2 − λ ) = 0 = 0 ∴ λ = 1 , 2
Here, we see that 1 1 1 is a repeated root. So, the algebraic multiplicity for:
λ 1 = 1 \lambda_1=1 λ 1 = 1 is 2 2 2 and
λ 2 = 2 \lambda_2=2 λ 2 = 2 is 1 1 1 .
For λ 1 = 1 \lambda_1=1 λ 1 = 1 ,
rref ( B − I ) = [ 0 1 0 0 0 1 0 0 0 ] \operatorname{rref}(B-I)= \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} rref ( B − I ) = 0 0 0 1 0 0 0 1 0
There’s one free variable, so the geometric multiplicity for λ 1 = 1 \lambda_1 = 1 λ 1 = 1 is 1 1 1 .
Similarly for λ 2 = 2 \lambda_2=2 λ 2 = 2 ,
rref ( B − 2 I ) = [ 1 0 − 2 0 1 − 1 0 0 0 ] \operatorname{rref}(B-2I) = \begin{bmatrix}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{bmatrix} rref ( B − 2 I ) = 1 0 0 0 1 0 − 2 − 1 0
There’s one free variable, so the geometric multiplicity for λ 2 = 2 \lambda_2 = 2 λ 2 = 2 is 1 1 1 .
Since the algebraic and geometric multiplicity for λ 1 = 1 \lambda_1=1 λ 1 = 1 are not equal (2 2 2 and 1 1 1 , respectively), B B B is not diagonalizable.
2. Find the conditions on a a a , b b b , c c c so that the following matrix is diagonalizable.[ 1 a b 0 2 c 0 0 1 ] \begin{bmatrix} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1\end{bmatrix} 1 0 0 a 2 0 b c 1
Let A = [ 1 a b 0 2 c 0 0 1 ] A = \begin{bmatrix}
1 & a & b \\
0 & 2 & c \\
0 & 0 & 1
\end{bmatrix} A = 1 0 0 a 2 0 b c 1 . A A A is diagonalizable if the algebraic and geometric multiplicities for all eigenvalues are equal. By inspection, we have that:
det ( A − λ I ) = ( 1 − λ ) 2 ( 2 − λ ) = 0 ∴ λ = 1 , 2 \det (A-\lambda I) = (1-\lambda)^2 (2-\lambda) = 0 \\
\therefore\lambda = 1,2 det ( A − λ I ) = ( 1 − λ ) 2 ( 2 − λ ) = 0 ∴ λ = 1 , 2
So the eigenvalues are 1 1 1 and 2 2 2 , with algebraic multiplicities of two and one, respectively.
For λ 1 = 1 \lambda_1 = 1 λ 1 = 1 ,
A − I = [ 0 a b 0 1 c 0 0 0 ] ⟹ rref ( A − I ) = [ 0 1 c 0 0 b − a c 0 0 0 ] A-I = \begin{bmatrix}
0 & a & b \\
0 & 1 & c \\
0 & 0 & 0
\end{bmatrix}
\implies \operatorname{rref}(A-I) = \begin{bmatrix}
0 & 1 & c \\
0 & 0 & b-ac \\
0 & 0 & 0
\end{bmatrix} A − I = 0 0 0 a 1 0 b c 0 ⟹ rref ( A − I ) = 0 0 0 1 0 0 c b − a c 0
A A A is diagonalizable if there exists two free variables for λ 1 = 1 \lambda_1=1 λ 1 = 1 . The last column will be a non-pivot if b − a c = 0 b-ac=0 b − a c = 0 .
For λ 2 = 2 \lambda_2=2 λ 2 = 2 ,
A − 2 I = [ − 1 a b 0 0 c 0 0 − 1 ] ⟹ rref ( A − 2 I ) = [ 1 − a 0 0 0 1 0 0 0 ] A-2I = \begin{bmatrix}
-1 & a & b \\
0 & 0 & c \\
0 & 0 & -1
\end{bmatrix}
\implies\operatorname{rref}(A-2I) = \begin{bmatrix}
1 & -a & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} A − 2 I = − 1 0 0 a 0 0 b c − 1 ⟹ rref ( A − 2 I ) = 1 0 0 − a 0 0 0 1 0
Additionally, for λ 2 = 2 \lambda_2=2 λ 2 = 2 , there must be only one free variable. Luckily, the rank is already 2 2 2 and − a -a − a is already in a non-pivot position, so there’s no further restriction on a a a .
As such, the matrix is diagonalizable if b − a c = 0 b-ac=0 b − a c = 0 .
3. Consider the set of all 3 × 3 3\times3 3 × 3 upper triangular matrices
U = { [ a b c 0 d e 0 0 f ] : a , b , c , d , e , f ∈ R } . \mathcal{U} = \Set{\begin{bmatrix}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{bmatrix} : a, b, c, d, e, f \in \R
}. U = ⎩ ⎨ ⎧ a 0 0 b d 0 c e f : a , b , c , d , e , f ∈ R ⎭ ⎬ ⎫ .
(a) Show that U \mathcal{U} U is a subspace of M 3 × 3 \mathcal{M}_{3\times3} M 3 × 3 .
Checking if U \mathcal{U} U is closed under addition
Consider two matrices A , B ∈ U A,B\in\mathcal{U} A , B ∈ U :
A = [ a 1 b 1 c 1 0 d 1 e 1 0 0 f 1 ] , B = [ a 2 b 2 c 2 0 d 2 e 2 0 0 f 2 ] A = \begin{bmatrix}
a_1 & b_1 & c_1 \\
0 & d_1 & e_1 \\
0 & 0 & f_1
\end{bmatrix}, \quad
B = \begin{bmatrix}
a_2 & b_2 & c_2 \\
0 & d_2 & e_2 \\
0 & 0 & f_2
\end{bmatrix} A = a 1 0 0 b 1 d 1 0 c 1 e 1 f 1 , B = a 2 0 0 b 2 d 2 0 c 2 e 2 f 2
Sure enough, adding A A A and B B B will still produce an upper-triangular matrix.
A + B = [ a 1 b 1 c 1 0 d 1 e 1 0 0 f 1 ] + [ a 2 b 2 c 2 0 d 2 e 2 0 0 f 2 ] = [ a 1 + a 2 b 1 + b 2 c 1 + c 2 0 d 1 + d 2 e 1 + e 2 0 0 f 1 + f 2 ] A + B = \begin{bmatrix}
a_1 & b_1 & c_1 \\
0 & d_1 & e_1 \\
0 & 0 & f_1
\end{bmatrix} + \begin{bmatrix}
a_2 & b_2 & c_2 \\
0 & d_2 & e_2 \\
0 & 0 & f_2
\end{bmatrix} = \begin{bmatrix}
a_1+a_2 & b_1+b_2 & c_1+c_2 \\
0 & d_1+d_2 & e_1+e_2 \\
0 & 0 & f_1+f_2
\end{bmatrix} A + B = a 1 0 0 b 1 d 1 0 c 1 e 1 f 1 + a 2 0 0 b 2 d 2 0 c 2 e 2 f 2 = a 1 + a 2 0 0 b 1 + b 2 d 1 + d 2 0 c 1 + c 2 e 1 + e 2 f 1 + f 2
Since A + B ∈ U A+B\in\mathcal{U} A + B ∈ U , it is closed under addition.
Checking if U \mathcal{U} U is closed under scalar multiplication
Consider a scalar α ∈ R \alpha\in\R α ∈ R and a matrix a ∈ U a\in\mathcal{U} a ∈ U :
A = [ a 1 b 1 c 1 0 d 1 e 1 0 0 f 1 ] A = \begin{bmatrix}
a_1 & b_1 & c_1 \\
0 & d_1 & e_1 \\
0 & 0 & f_1
\end{bmatrix} A = a 1 0 0 b 1 d 1 0 c 1 e 1 f 1
Multiplying a scalar to an upper-triangular matrix will still produce an upper-triangular matrix.
α A = [ α a 1 α b 1 α c 1 0 α d 1 α e 1 0 0 α f 1 ] \alpha A = \begin{bmatrix}
\alpha a_1 & \alpha b_1 & \alpha c_1 \\
0 & \alpha d_1 & \alpha e_1 \\
0 & 0 & \alpha f_1
\end{bmatrix} α A = α a 1 0 0 α b 1 α d 1 0 α c 1 α e 1 α f 1
Since α A ∈ U \alpha A\in\mathcal{U} α A ∈ U , it is closed under scalar multiplication.
Hence, U \mathcal{U} U is a subspace of M 3 × 3 \mathcal{M}_{3\times3} M 3 × 3 .
(b) What is the dimension of U \mathcal{U} U ?
For a , b , c , d , e , f ∈ R a,b,c,d,e,f\in\R a , b , c , d , e , f ∈ R , the matrix [ a b c 0 d e 0 0 f ] \begin{bmatrix}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{bmatrix} a 0 0 b d 0 c e f can be decomposed as:
[ a b c 0 d e 0 0 f ] = a [ 1 0 0 0 0 0 0 0 0 ] + b [ 0 1 0 0 0 0 0 0 0 ] + c [ 0 0 1 0 0 0 0 0 0 ] + d [ 0 0 0 0 1 0 0 0 0 ] + e [ 0 0 0 0 0 1 0 0 0 ] + f [ 0 0 0 0 0 1 0 0 0 ] \begin{split}
\begin{bmatrix}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{bmatrix} &= a \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + b \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} + c \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \\
&\quad+ d \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} + e \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} + f \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\end{split} a 0 0 b d 0 c e f = a 1 0 0 0 0 0 0 0 0 + b 0 0 0 1 0 0 0 0 0 + c 0 0 0 0 0 0 1 0 0 + d 0 0 0 0 1 0 0 0 0 + e 0 0 0 0 0 0 0 1 0 + f 0 0 0 0 0 0 0 1 0
Note that these six 3 × 3 3\times3 3 × 3 matrices are linearly independent. By observation, we can see that
0 ⃗ = [ 0 0 0 0 0 0 0 0 0 ] ⟺ a = b = c = d = e = f = 0. \vec{\mathbf{0}} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \iff a=b=c=d=e=f=0. 0 = 0 0 0 0 0 0 0 0 0 ⟺ a = b = c = d = e = f = 0.
As such, by definition, it follows that these six vectors forms a basis of U \mathcal{U} U . Which subsequently means that dim U = 6 \dim\mathcal{U}=6 dim U = 6 .
(c)
(i) Is it true that any 7 matrices taken from U \mathcal{U} U must be linearly dependent? Explain
Yes. As shown in (b), its dimension is six. Choosing more than six means that at least one matrix must be the same or is a multiple of the other.
(ii) Is it true that any 6 matrices taken from U \mathcal{U} U must be a basis for U \mathcal{U} U ? Explain
No. If all six are identical or are multiple of each other, then they may not be a basis of U \mathcal{U} U .
4. Consider the set of all continuous functions on the interval [ a , b ] [a, b] [ a , b ] , denoted by C ( [ a , b ] ) C([a, b]) C ([ a , b ]) . Show that the set of all functions with mean value zero, i.e. M = { f : 1 b − a ∫ a b f ( x ) d x = 0 } M = \Set{ f: \frac{1}{b-a}\int_a^b f(x)dx = 0} M = { f : b − a 1 ∫ a b f ( x ) d x = 0 } is a subspace of C ( [ a , b ] ) C([a, b]) C ([ a , b ]) .
Checking if M M M is closed under addition
Consider two functions f , g ∈ M f,g\in M f , g ∈ M .
By linearity of integrals,
∫ ( f + g ) = ∫ f + ∫ g = 0 + 0. \int(f+g) = \int f + \int g = 0 + 0. ∫ ( f + g ) = ∫ f + ∫ g = 0 + 0.
Since f + g ∈ M f+g\in M f + g ∈ M , it is closed under addition.
Checking if M M M is closed under scalar multiplication
Similarly, for a scalar α ∈ R \alpha\in\R α ∈ R and a function f ∈ M f\in M f ∈ M .
By linearity, we know that
∫ α f = α ∫ f = α ( 0 ) . \int \alpha f = \alpha\int f = \alpha (0). ∫ α f = α ∫ f = α ( 0 ) .
As such, M M M is closed under scalar multiplication.
Hence, M M M is a subspace of C ( [ a , b ] ) C([a, b]) C ([ a , b ]) .
5. Determine if the following sets of vectors linearly independent in their own vector space.
(i) x 2 − 3 , 2 − x , ( x − 1 ) 2 x^2 −3, 2 −x, (x−1)^2 x 2 − 3 , 2 − x , ( x − 1 ) 2 on P 2 \mathcal{P}_2 P 2 .
For a , b , c ∈ R a,b,c\in\R a , b , c ∈ R , suppose that
a ( x 2 − 3 ) + b ( 2 − x ) + c ( x − 1 ) 2 = 0 ∀ x ∈ R . a(x^2 −3) + b(2-x) + c(x−1)^2 = 0 \quad\forall x\in\R. a ( x 2 − 3 ) + b ( 2 − x ) + c ( x − 1 ) 2 = 0 ∀ x ∈ R .
If x = 0 x=0 x = 0 , then:
a ( 0 2 − 3 ) + b ( 2 − 0 ) + c ( 0 − 1 ) 2 = 0 − 3 a + 2 b + c = 0 a(0^2 −3) + b(2-0) + c(0−1)^2 = 0 \\
-3a+2b+c = 0 a ( 0 2 − 3 ) + b ( 2 − 0 ) + c ( 0 − 1 ) 2 = 0 − 3 a + 2 b + c = 0
If x = 1 x=1 x = 1 , then:
a ( 1 2 − 3 ) + b ( 2 − 1 ) + c ( 1 − 1 ) 2 = 0 − 2 a + b = 0 a(1^2 −3) + b(2-1) + c(1−1)^2 = 0 \\
-2a+b = 0 a ( 1 2 − 3 ) + b ( 2 − 1 ) + c ( 1 − 1 ) 2 = 0 − 2 a + b = 0
If x = 2 x=2 x = 2 , then:
a ( 2 2 − 3 ) + b ( 2 − 2 ) + c ( 2 − 1 ) 2 = 0 a + c = 0 a(2^2 −3) + b(2-2) + c(2−1)^2 = 0 \\
a+c = 0 a ( 2 2 − 3 ) + b ( 2 − 2 ) + c ( 2 − 1 ) 2 = 0 a + c = 0
And so, we have a homogenous system of equations:
{ − 3 a + 2 b + c = 0 − 2 a + b = 0 a + c = 0 \begin{cases}
-3a+2b+c &= 0 \\
-2a+b &= 0 \\
a+c &= 0
\end{cases} ⎩ ⎨ ⎧ − 3 a + 2 b + c − 2 a + b a + c = 0 = 0 = 0
rref [ − 3 2 1 0 − 2 1 0 0 1 0 1 0 ] = [ 1 0 1 0 0 1 2 0 0 0 0 0 ] \operatorname{rref}\left[
\begin{array}{ccc|c}
-3 & 2 & 1 & 0 \\
-2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}
\right] =
\left[
\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}
\right] rref − 3 − 2 1 2 1 0 1 0 1 0 0 0 = 1 0 0 0 1 0 1 2 0 0 0 0
Since there are free variables, they are linearly dependent.
(ii) [ 2 1 3 2 ] , [ 1 2 0 3 ] , [ 1 5 2 0 ] \begin{bmatrix}2 & 1 \\3 & 2\end{bmatrix},\begin{bmatrix}1 & 2 \\0 & 3\end{bmatrix},\begin{bmatrix}1 & 5 \\2 & 0\end{bmatrix} [ 2 3 1 2 ] , [ 1 0 2 3 ] , [ 1 2 5 0 ] on M 2 × 2 \mathcal{M}_{2\times2} M 2 × 2
For a , b , c ∈ R a,b,c\in\R a , b , c ∈ R , suppose that:
a [ 2 1 3 2 ] + b [ 1 2 0 3 ] + c [ 1 5 2 0 ] = [ 0 0 0 0 ] ∀ a , b , c ∈ R . a\begin{bmatrix}
2 & 1 \\ 3 & 2
\end{bmatrix} +
b\begin{bmatrix}
1 & 2 \\ 0 & 3
\end{bmatrix} +
c\begin{bmatrix}
1 & 5 \\ 2 & 0
\end{bmatrix} =
\begin{bmatrix}
0 & 0 \\ 0 & 0
\end{bmatrix}
\quad\forall a,b,c\in\R. a [ 2 3 1 2 ] + b [ 1 0 2 3 ] + c [ 1 2 5 0 ] = [ 0 0 0 0 ] ∀ a , b , c ∈ R .
Then:
a [ 2 1 3 2 ] + b [ 1 2 0 3 ] + c [ 1 5 2 0 ] = [ 2 a + b + c a + 2 b + 5 c 3 a + 2 c 2 a + 3 b ] = [ 0 0 0 0 ] \begin{align*}
a\begin{bmatrix}
2 & 1 \\ 3 & 2
\end{bmatrix} +
b\begin{bmatrix}
1 & 2 \\ 0 & 3
\end{bmatrix} +
c\begin{bmatrix}
1 & 5 \\ 2 & 0
\end{bmatrix} &=
\begin{bmatrix}
2a+b+c & a+2b+5c \\
3a+2c & 2a+3b
\end{bmatrix} \\
&= \begin{bmatrix}
0 & 0 \\ 0 & 0
\end{bmatrix}
\end{align*} a [ 2 3 1 2 ] + b [ 1 0 2 3 ] + c [ 1 2 5 0 ] = [ 2 a + b + c 3 a + 2 c a + 2 b + 5 c 2 a + 3 b ] = [ 0 0 0 0 ]
Putting it into a homogenous system, we get:
rref [ 2 1 1 0 1 2 5 0 3 0 2 0 2 3 0 0 ] = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ] \operatorname{rref}
\left[
\begin{array}{ccc|c}
2 & 1 & 1 & 0 \\
1 & 2 & 5 & 0 \\
3 & 0 & 2 & 0 \\
2 & 3 & 0 & 0
\end{array}
\right] =
\left[
\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}
\right] rref 2 1 3 2 1 2 0 3 1 5 2 0 0 0 0 0 = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
Since there are no free variables, they are linearly independent.
(iii) e x , e 3 x e^x, e^{3x} e x , e 3 x on C ( [ 0 , 1 ] ) C([0, 1]) C ([ 0 , 1 ]) .
For a , b ∈ R a,b\in\R a , b ∈ R , suppose that:
a e x + b e 3 x = 0 ∀ a , b ∈ R . ae^x + be^{3x} = 0\quad\forall a,b\in\R. a e x + b e 3 x = 0 ∀ a , b ∈ R .
Let x = 0 x=0 x = 0 , then:
a e 0 + b e 0 = 0 a + b = 0 ae^0 + be^{0} = 0 \\
a+b=0 a e 0 + b e 0 = 0 a + b = 0
Let x = 1 x=1 x = 1 , then:
a e 1 + b e 3 = 0 a e + b e 3 = 0 ae^1 + be^{3} = 0 \\
ae+be^3=0 a e 1 + b e 3 = 0 a e + b e 3 = 0
Again, putting them into a system, we get:
rref [ 1 1 0 e e 3 0 ] = [ 1 0 0 0 1 0 ] \operatorname{rref}\left[
\begin{array}{cc|c}
1 & 1 & 0 \\
e & e^3 & 0
\end{array}
\right] = \left[
\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}
\right] rref [ 1 e 1 e 3 0 0 ] = [ 1 0 0 1 0 0 ]
As such, they are linearly independent.
6. Let M = { [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] : a 11 + a 22 + a 33 = 0 } . M = \Set{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}: a_{11} + a_{22} + a_{33} = 0}. M = ⎩ ⎨ ⎧ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 : a 11 + a 22 + a 33 = 0 ⎭ ⎬ ⎫ .
(i) Show that M M M is a subspace for M 3 × 3 \mathcal{M}_{3\times3} M 3 × 3 .
Checking if M M M is closed under addition
Consider two matrices A , B ∈ M A,B\in M A , B ∈ M :
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] , B = [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix},\quad
B = \begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{bmatrix} A = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 , B = b 11 b 21 b 31 b 12 b 22 b 32 b 13 b 23 b 33
Then,
A + B = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] + [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = [ a 11 + b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23 a 31 + b 31 a 32 + b 32 a 33 + b 33 ] . A+B = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} + \begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{bmatrix} =\begin{bmatrix}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\
a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33}
\end{bmatrix}. A + B = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 + b 11 b 21 b 31 b 12 b 22 b 32 b 13 b 23 b 33 = a 11 + b 11 a 21 + b 21 a 31 + b 31 a 12 + b 12 a 22 + b 22 a 32 + b 32 a 13 + b 13 a 23 + b 23 a 33 + b 33 .
And so the trace of A + B A+B A + B is:
( a 11 + b 11 ) + ( a 22 + b 22 ) + ( a 33 + b 33 ) = ( a 11 + a 22 + a 33 ) + ( b 11 + b 22 + b 33 ) = 0 + 0 = 0 \begin{align*}
(a_{11}+b_{11}) + (a_{22}+b_{22}) + (a_{33}+b_{33})
&= (a_{11} + a_{22} + a_{33}) + (b_{11} + b_{22} + b_{33}) \\
&= 0+0 \\
&= 0
\end{align*} ( a 11 + b 11 ) + ( a 22 + b 22 ) + ( a 33 + b 33 ) = ( a 11 + a 22 + a 33 ) + ( b 11 + b 22 + b 33 ) = 0 + 0 = 0
Therefore, M M M is closed under addition.
Checking if M M M is closed under scalar multiplication
Consider a scalar α ∈ R \alpha\in\R α ∈ R and a matrix A ∈ M A\in M A ∈ M where
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] . A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}. A = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 .
Then,
α A = [ α a 11 α a 12 α a 13 α a 21 α a 22 α a 23 α a 31 α a 32 α a 33 ] . \alpha A = \begin{bmatrix}
\alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\
\alpha a_{21} & \alpha a_{22} & \alpha a_{23} \\
\alpha a_{31} & \alpha a_{32} & \alpha a_{33}
\end{bmatrix}. α A = α a 11 α a 21 α a 31 α a 12 α a 22 α a 32 α a 13 α a 23 α a 33 .
And so,
α a 11 + α a 22 + α a 33 = α ( a 11 + a 22 + a 33 ) = α ( 0 ) = 0. \alpha a_{11}+\alpha a_{22}+\alpha a_{33} = \alpha(a_{11}+a_{22}+a_{33}) = \alpha(0) = 0. α a 11 + α a 22 + α a 33 = α ( a 11 + a 22 + a 33 ) = α ( 0 ) = 0.
Since α A ∈ M \alpha A\in M α A ∈ M , it is closed under scalar multiplication.
Hence, M M M is a subspace of M 3 × 3 \mathcal{M}_{3\times3} M 3 × 3 .
(ii) Find a basis for M M M and what is the dimension of M M M ?
For [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] ∈ M \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}\in M a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∈ M . Since a 11 + a 22 + a 33 = 0 a_{11}+a_{22}+a_{33}=0 a 11 + a 22 + a 33 = 0 , then a 11 = − a 22 − a 33 a_{11}=-a_{22}-a_{33} a 11 = − a 22 − a 33 .
And so,
[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] = [ − a 22 − a 33 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] = a 22 [ − 1 0 0 0 1 0 0 0 0 ] + a 33 [ − 1 0 0 0 0 0 0 0 1 ] + a 12 [ 0 1 0 0 0 0 0 0 0 ] + a 13 [ 0 0 1 0 0 0 0 0 0 ] + a 21 [ 0 0 0 1 0 0 0 0 0 ] + a 23 [ 0 0 0 0 0 1 0 0 0 ] + a 31 [ 0 0 0 0 0 0 1 0 0 ] + a 32 [ 0 0 0 0 0 0 0 1 0 ] \begin{align*}
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
&= \begin{bmatrix}
-a_{22}-a_{33} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} \\
&\begin{split}
&=a_{22} \begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
+ a_{33} \begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
+ a_{12} \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
+ a_{13} \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \\
&\quad+ a_{21} \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
+ a_{23} \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
+ a_{31} \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}
+ a_{32} \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\end{split}
\end{align*} a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 = − a 22 − a 33 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 = a 22 − 1 0 0 0 1 0 0 0 0 + a 33 − 1 0 0 0 0 0 0 0 1 + a 12 0 0 0 1 0 0 0 0 0 + a 13 0 0 0 0 0 0 1 0 0 + a 21 0 1 0 0 0 0 0 0 0 + a 23 0 0 0 0 0 0 0 1 0 + a 31 0 0 1 0 0 0 0 0 0 + a 32 0 0 0 0 0 1 0 0 0
A basis of M M M is
{ [ − 1 0 0 0 1 0 0 0 0 ] , [ − 1 0 0 0 0 0 0 0 1 ] , [ 0 1 0 0 0 0 0 0 0 ] , [ 0 0 1 0 0 0 0 0 0 ] , [ 0 0 0 1 0 0 0 0 0 ] , [ 0 0 0 0 0 1 0 0 0 ] , [ 0 0 0 0 0 0 1 0 0 ] , [ 0 0 0 0 0 0 0 1 0 ] } \Set{
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
} ⎩ ⎨ ⎧ − 1 0 0 0 1 0 0 0 0 , − 1 0 0 0 0 0 0 0 1 , 0 0 0 1 0 0 0 0 0 , 0 0 0 0 0 0 1 0 0 , 0 1 0 0 0 0 0 0 0 , 0 0 0 0 0 0 0 1 0 , 0 0 1 0 0 0 0 0 0 , 0 0 0 0 0 1 0 0 0 ⎭ ⎬ ⎫
and its dimension is eight.