Homework 8

1. Find the algebraic and geometric multiplicity of the eigenvalues of the following matrices. A=[1111202113003010004100001],B=[111011002]A = \begin{bmatrix} 1 & 1 & −1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & −1 \\ 0 & 0 & 0 & 0 & −1\end{bmatrix},\quad B = \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2\end{bmatrix}Are they diagonalizable? Explain.

For A=[1111202113003010004100001]A = \begin{bmatrix} 1 & 1 & −1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & −1 \\ 0 & 0 & 0 & 0 & −1\end{bmatrix}

AλI=[1λ111202λ113003λ010004λ100001λ]det(AλI)=(1λ)(2λ)(3λ)(4λ)(1λ)=0λ=1,1,2,3,4A-\lambda I = \begin{bmatrix} 1-\lambda & 1 & −1 & 1 & 2 \\ 0 & 2-\lambda & 1 & 1 & 3 \\ 0 & 0 & 3-\lambda & 0 & 1 \\ 0 & 0 & 0 & 4-\lambda & −1 \\ 0 & 0 & 0 & 0 & −1-\lambda \end{bmatrix} \\ \det(A-\lambda I) = (1-\lambda)(2-\lambda)(3-\lambda)(4-\lambda)(−1-\lambda) = 0 \\ \therefore\lambda= -1, 1, 2, 3, 4

By observation, we can see that there are no repeated roots in the characteristic polynomial. As such, the algebraic multiplicity of all five eigenvalues are 11.

For λ1=1\lambda_1=-1,

rref(A(1)I)=[100011150100596000101400011500000]\operatorname{rref} (A-(-1) I) = \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{11}{15} \\[.5em] 0 & 1 & 0 & 0 & \frac{59}{60} \\[.5em] 0 & 0 & 1 & 0 & \frac{1}{4} \\[.5em] 0 & 0 & 0 & 1 & -\frac{1}{5} \\[.5em] 0 & 0 & 0 & 0 & 0 \end{bmatrix}

There’s one free variable, so the geometric multiplicity for λ1=1\lambda_1 = -1 is 11 (because the nullity i.e., dimker(Aλ)\dim\ker (A-\lambda) is 11).

And similarly for λ2,λ3,λ4,λ5\lambda_2,\lambda_3,\lambda_4,\lambda_5, we find that they all have one free variable.

λ2=1λ3=2λ4=3λ5=4rref(AI)rref(A2I)rref(A3I)rref(A4I)[1100000100000100000100000][1100000100000100000100000][1000001100000100000100000][100120010120001000000100000]\begin{array}{c} \lambda_2 = 1 & \lambda_3 = 2 & \lambda_4 = 3 & \lambda_5 = 4 & \\ \operatorname{rref}(A-I) & \operatorname{rref}(A-2I) & \operatorname{rref}(A-3I) & \operatorname{rref}(A-4I) \\ \\ \hline \\ \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & 0 \\[.2em] 0 & 1 & 0 & -\frac{1}{2} & 0 \\[.2em] 0 & 0 & 1 & 0 & 0 \\[.2em] 0 & 0 & 0 & 0 & 1 \\[.2em] 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{array}

As such, the geometric multiplicity of all five eigenvalues are also 11.

Since the algebraic and geometric multiplicity are the same for all five eigenvalues (all one), AA is diagonalizable.

For B=[111011002]B = \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2\end{bmatrix}

BλI=[1λ1101λ1002λ]det(BλI)=(1λ)(1λ)(2λ)=0=(1λ)2(2λ)=0λ=1,2B-\lambda I = \begin{bmatrix} 1-\lambda & 1 & 1 \\ 0 & 1-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{bmatrix} \\ \begin{align*} \det(B-\lambda I) &= (1-\lambda)(1-\lambda)(2-\lambda) &= 0 \\ &= (1-\lambda)^2(2-\lambda) &= 0 \end{align*} \\ \therefore\lambda=1,2

Here, we see that 11 is a repeated root. So, the algebraic multiplicity for:

For λ1=1\lambda_1=1,

rref(BI)=[010001000]\operatorname{rref}(B-I)= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}

There’s one free variable, so the geometric multiplicity for λ1=1\lambda_1 = 1 is 11.

Similarly for λ2=2\lambda_2=2,

rref(B2I)=[102011000]\operatorname{rref}(B-2I) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}

There’s one free variable, so the geometric multiplicity for λ2=2\lambda_2 = 2 is 11.

Since the algebraic and geometric multiplicity for λ1=1\lambda_1=1 are not equal (22 and 11, respectively), BB is not diagonalizable.

2. Find the conditions on aa, bb, cc so that the following matrix is diagonalizable.[1ab02c001]\begin{bmatrix} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1\end{bmatrix}

Let A=[1ab02c001]A = \begin{bmatrix} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1 \end{bmatrix}. AA is diagonalizable if the algebraic and geometric multiplicities for all eigenvalues are equal. By inspection, we have that:

det(AλI)=(1λ)2(2λ)=0λ=1,2\det (A-\lambda I) = (1-\lambda)^2 (2-\lambda) = 0 \\ \therefore\lambda = 1,2

So the eigenvalues are 11 and 22, with algebraic multiplicities of two and one, respectively.

For λ1=1\lambda_1 = 1,

AI=[0ab01c000]    rref(AI)=[01c00bac000]A-I = \begin{bmatrix} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & 0 \end{bmatrix} \implies \operatorname{rref}(A-I) = \begin{bmatrix} 0 & 1 & c \\ 0 & 0 & b-ac \\ 0 & 0 & 0 \end{bmatrix}

AA is diagonalizable if there exists two free variables for λ1=1\lambda_1=1. The last column will be a non-pivot if bac=0b-ac=0.

For λ2=2\lambda_2=2,

A2I=[1ab00c001]    rref(A2I)=[1a0001000]A-2I = \begin{bmatrix} -1 & a & b \\ 0 & 0 & c \\ 0 & 0 & -1 \end{bmatrix} \implies\operatorname{rref}(A-2I) = \begin{bmatrix} 1 & -a & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}

Additionally, for λ2=2\lambda_2=2, there must be only one free variable. Luckily, the rank is already 22 and a-a is already in a non-pivot position, so there’s no further restriction on aa.

As such, the matrix is diagonalizable if bac=0b-ac=0.

3. Consider the set of all 3×33\times3 upper triangular matrices

U={[abc0de00f]:a,b,c,d,e,fR}.\mathcal{U} = \Set{\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} : a, b, c, d, e, f \in \R }.

(a) Show that U\mathcal{U} is a subspace of M3×3\mathcal{M}_{3\times3}.

Checking if U\mathcal{U} is closed under addition

Consider two matrices A,BUA,B\in\mathcal{U}:

A=[a1b1c10d1e100f1],B=[a2b2c20d2e200f2]A = \begin{bmatrix} a_1 & b_1 & c_1 \\ 0 & d_1 & e_1 \\ 0 & 0 & f_1 \end{bmatrix}, \quad B = \begin{bmatrix} a_2 & b_2 & c_2 \\ 0 & d_2 & e_2 \\ 0 & 0 & f_2 \end{bmatrix}

Sure enough, adding AA and BB will still produce an upper-triangular matrix.

A+B=[a1b1c10d1e100f1]+[a2b2c20d2e200f2]=[a1+a2b1+b2c1+c20d1+d2e1+e200f1+f2]A + B = \begin{bmatrix} a_1 & b_1 & c_1 \\ 0 & d_1 & e_1 \\ 0 & 0 & f_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 & c_2 \\ 0 & d_2 & e_2 \\ 0 & 0 & f_2 \end{bmatrix} = \begin{bmatrix} a_1+a_2 & b_1+b_2 & c_1+c_2 \\ 0 & d_1+d_2 & e_1+e_2 \\ 0 & 0 & f_1+f_2 \end{bmatrix}

Since A+BUA+B\in\mathcal{U}, it is closed under addition.

Checking if U\mathcal{U} is closed under scalar multiplication

Consider a scalar αR\alpha\in\R and a matrix aUa\in\mathcal{U}:

A=[a1b1c10d1e100f1]A = \begin{bmatrix} a_1 & b_1 & c_1 \\ 0 & d_1 & e_1 \\ 0 & 0 & f_1 \end{bmatrix}

Multiplying a scalar to an upper-triangular matrix will still produce an upper-triangular matrix.

αA=[αa1αb1αc10αd1αe100αf1]\alpha A = \begin{bmatrix} \alpha a_1 & \alpha b_1 & \alpha c_1 \\ 0 & \alpha d_1 & \alpha e_1 \\ 0 & 0 & \alpha f_1 \end{bmatrix}

Since αAU\alpha A\in\mathcal{U}, it is closed under scalar multiplication.

Hence, U\mathcal{U} is a subspace of M3×3\mathcal{M}_{3\times3}.

(b) What is the dimension of U\mathcal{U}?

For a,b,c,d,e,fRa,b,c,d,e,f\in\R, the matrix [abc0de00f]\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} can be decomposed as:

[abc0de00f]=a[100000000]+b[010000000]+c[001000000]+d[000010000]+e[000001000]+f[000001000]\begin{split} \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} &= a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &\quad+ d \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + e \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + f \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \end{split}

Note that these six 3×33\times3 matrices are linearly independent. By observation, we can see that

0=[000000000]    a=b=c=d=e=f=0.\vec{\mathbf{0}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \iff a=b=c=d=e=f=0.

As such, by definition, it follows that these six vectors forms a basis of U\mathcal{U}. Which subsequently means that dimU=6\dim\mathcal{U}=6.

(c)

(i) Is it true that any 7 matrices taken from U\mathcal{U} must be linearly dependent? Explain

Yes. As shown in (b), its dimension is six. Choosing more than six means that at least one matrix must be the same or is a multiple of the other.

(ii) Is it true that any 6 matrices taken from U\mathcal{U} must be a basis for U\mathcal{U}? Explain

No. If all six are identical or are multiple of each other, then they may not be a basis of U\mathcal{U}.

4. Consider the set of all continuous functions on the interval [a,b][a, b], denoted by C([a,b])C([a, b]). Show that the set of all functions with mean value zero, i.e. M={f:1baabf(x)dx=0}M = \Set{ f: \frac{1}{b-a}\int_a^b f(x)dx = 0} is a subspace of C([a,b])C([a, b]).

Checking if MM is closed under addition

Consider two functions f,gMf,g\in M.

By linearity of integrals,

(f+g)=f+g=0+0.\int(f+g) = \int f + \int g = 0 + 0.

Since f+gMf+g\in M, it is closed under addition.

Checking if MM is closed under scalar multiplication

Similarly, for a scalar αR\alpha\in\R and a function fMf\in M.

By linearity, we know that

αf=αf=α(0).\int \alpha f = \alpha\int f = \alpha (0).

As such, MM is closed under scalar multiplication.

Hence, MM is a subspace of C([a,b])C([a, b]).

5. Determine if the following sets of vectors linearly independent in their own vector space.

(i) x23,2x,(x1)2x^2 −3, 2 −x, (x−1)^2 on P2\mathcal{P}_2.

For a,b,cRa,b,c\in\R, suppose that

a(x23)+b(2x)+c(x1)2=0xR.a(x^2 −3) + b(2-x) + c(x−1)^2 = 0 \quad\forall x\in\R.

If x=0x=0, then:

a(023)+b(20)+c(01)2=03a+2b+c=0a(0^2 −3) + b(2-0) + c(0−1)^2 = 0 \\ -3a+2b+c = 0

If x=1x=1, then:

a(123)+b(21)+c(11)2=02a+b=0a(1^2 −3) + b(2-1) + c(1−1)^2 = 0 \\ -2a+b = 0

If x=2x=2, then:

a(223)+b(22)+c(21)2=0a+c=0a(2^2 −3) + b(2-2) + c(2−1)^2 = 0 \\ a+c = 0

And so, we have a homogenous system of equations:

{3a+2b+c=02a+b=0a+c=0\begin{cases} -3a+2b+c &= 0 \\ -2a+b &= 0 \\ a+c &= 0 \end{cases}

rref[321021001010]=[101001200000]\operatorname{rref}\left[ \begin{array}{ccc|c} -3 & 2 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right] = \left[ \begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]

Since there are free variables, they are linearly dependent.

(ii) [2132],[1203],[1520]\begin{bmatrix}2 & 1 \\3 & 2\end{bmatrix},\begin{bmatrix}1 & 2 \\0 & 3\end{bmatrix},\begin{bmatrix}1 & 5 \\2 & 0\end{bmatrix} on M2×2\mathcal{M}_{2\times2}

For a,b,cRa,b,c\in\R, suppose that:

a[2132]+b[1203]+c[1520]=[0000]a,b,cR.a\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} + b\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} + c\begin{bmatrix} 1 & 5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad\forall a,b,c\in\R.

Then:
a[2132]+b[1203]+c[1520]=[2a+b+ca+2b+5c3a+2c2a+3b]=[0000]\begin{align*} a\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} + b\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} + c\begin{bmatrix} 1 & 5 \\ 2 & 0 \end{bmatrix} &= \begin{bmatrix} 2a+b+c & a+2b+5c \\ 3a+2c & 2a+3b \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{align*}

Putting it into a homogenous system, we get:

rref[2110125030202300]=[1000010000100000]\operatorname{rref} \left[ \begin{array}{ccc|c} 2 & 1 & 1 & 0 \\ 1 & 2 & 5 & 0 \\ 3 & 0 & 2 & 0 \\ 2 & 3 & 0 & 0 \end{array} \right] = \left[ \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]

Since there are no free variables, they are linearly independent.

(iii) ex,e3xe^x, e^{3x} on C([0,1])C([0, 1]).

For a,bRa,b\in\R, suppose that:

aex+be3x=0a,bR.ae^x + be^{3x} = 0\quad\forall a,b\in\R.

Let x=0x=0, then:

ae0+be0=0a+b=0ae^0 + be^{0} = 0 \\ a+b=0

Let x=1x=1, then:

ae1+be3=0ae+be3=0ae^1 + be^{3} = 0 \\ ae+be^3=0

Again, putting them into a system, we get:

rref[110ee30]=[100010]\operatorname{rref}\left[ \begin{array}{cc|c} 1 & 1 & 0 \\ e & e^3 & 0 \end{array} \right] = \left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]

As such, they are linearly independent.

6. Let M={[a11a12a13a21a22a23a31a32a33]:a11+a22+a33=0}.M = \Set{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}: a_{11} + a_{22} + a_{33} = 0}.

(i) Show that MM is a subspace for M3×3\mathcal{M}_{3\times3}.

Checking if MM is closed under addition

Consider two matrices A,BMA,B\in M:

A=[a11a12a13a21a22a23a31a32a33],B=[b11b12b13b21b22b23b31b32b33]A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},\quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}

Then,

A+B=[a11a12a13a21a22a23a31a32a33]+[b11b12b13b21b22b23b31b32b33]=[a11+b11a12+b12a13+b13a21+b21a22+b22a23+b23a31+b31a32+b32a33+b33].A+B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} =\begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{bmatrix}.

And so the trace of A+BA+B is:

(a11+b11)+(a22+b22)+(a33+b33)=(a11+a22+a33)+(b11+b22+b33)=0+0=0\begin{align*} (a_{11}+b_{11}) + (a_{22}+b_{22}) + (a_{33}+b_{33}) &= (a_{11} + a_{22} + a_{33}) + (b_{11} + b_{22} + b_{33}) \\ &= 0+0 \\ &= 0 \end{align*}

Therefore, MM is closed under addition.

Checking if MM is closed under scalar multiplication

Consider a scalar αR\alpha\in\R and a matrix AMA\in M where

A=[a11a12a13a21a22a23a31a32a33].A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.

Then,

αA=[αa11αa12αa13αa21αa22αa23αa31αa32αa33].\alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} \\ \alpha a_{31} & \alpha a_{32} & \alpha a_{33} \end{bmatrix}.

And so,

αa11+αa22+αa33=α(a11+a22+a33)=α(0)=0.\alpha a_{11}+\alpha a_{22}+\alpha a_{33} = \alpha(a_{11}+a_{22}+a_{33}) = \alpha(0) = 0.

Since αAM\alpha A\in M, it is closed under scalar multiplication.

Hence, MM is a subspace of M3×3\mathcal{M}_{3\times3}.

(ii) Find a basis for MM and what is the dimension of MM?

For [a11a12a13a21a22a23a31a32a33]M\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\in M. Since a11+a22+a33=0a_{11}+a_{22}+a_{33}=0, then a11=a22a33a_{11}=-a_{22}-a_{33}.

And so,

[a11a12a13a21a22a23a31a32a33]=[a22a33a12a13a21a22a23a31a32a33]=a22[100010000]+a33[100000001]+a12[010000000]+a13[001000000]+a21[000100000]+a23[000001000]+a31[000000100]+a32[000000010]\begin{align*} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} &= \begin{bmatrix} -a_{22}-a_{33} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ &\begin{split} &=a_{22} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{33} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{13} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ &\quad+ a_{21} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + a_{23} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + a_{31} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} + a_{32} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{split} \end{align*}

A basis of MM is

{[100010000],[100000001],[010000000],[001000000],[000100000],[000001000],[000000100],[000000010]}\Set{ \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} }

and its dimension is eight.

Homework 8

  1. Find the algebraic and geometric multiplicity of the eigenvalues of the following matrices. A=[1111202113003010004100001],B=[111011002]A = \begin{bmatrix} 1 & 1 & −1 & 1 & 2 \\ 0 & 2 & 1 & 1 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & −1 \\ 0 & 0 & 0 & 0 & −1\end{bmatrix},\quad B = \begin{bmatrix}1 & 1 & 1 \\0 & 1 & 1 \\0 & 0 & 2\end{bmatrix}Are they diagonalizable? Explain.
  1. Consider the set of all 3×33\times3 upper triangular matrices
  1. Consider the set of all continuous functions on the interval [a,b][a, b], denoted by C([a,b])C([a, b]). Show that the set of all functions with mean value zero, i.e. M={f:1baabf(x)dx=0}M = \Set{ f: \frac{1}{b-a}\int_a^b f(x)dx = 0} is a subspace of C([a,b])C([a, b]).
  1. Determine if the following sets of vectors linearly independent in their own vector space.
  1. Let M={[a11a12a13a21a22a23a31a32a33]:a11+a22+a33=0}.M = \Set{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}: a_{11} + a_{22} + a_{33} = 0}.