Homework 6

1. Consider the linear transformation considered in the previous homework. Determine if they are surjective or injective.

(i) T(x1,x2,x3)=(3x1x2,x2+x3,x1x2x3)T(x_1, x_2, x_3) = (3x_1 - x_2, x_2 + x_3, x_1 - x_2 - x_3)

rref(310011111)=(100010001)\operatorname{rref} \begin{pmatrix} 3 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Full rank. Therefore, bijective.

(ii) TT maps [100]\begin{bmatrix} 1 \\ 0 \\ 0\end{bmatrix}, and[010]\begin{bmatrix} 0 \\ 1 \\ 0\end{bmatrix} and[001]\begin{bmatrix} 0 \\ 0 \\ 1\end{bmatrix} respectively to[01]\begin{bmatrix} 0 \\ 1\end{bmatrix} ,[11]\begin{bmatrix} 1 \\ 1\end{bmatrix} ,[11]\begin{bmatrix} 1 \\ -1\end{bmatrix}

rref(011111)=(102011)\operatorname{rref} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}

No free variables. Nullity is not zero. Therefore, not injective.

Rank two, which is equal to the dimension of the codomain. Therefore, surjective.

(iii) T(x1,x2)=x1[112]+x2[115]T(x_1, x_2) = x_1 \begin{bmatrix} 1 \\ 1 \\ 2\end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ 5\end{bmatrix}

rref(111125)=(100100)\operatorname{rref} \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}

Nullity is zero. Therefore, injective.

Rank two but codomain is in R3\R^3. Therefore, not surjective.

2. Determine if the following statements are true or false. Give explanation.

(a) Suppose that there are 6 vectors in R4\R^4, it must be linearly decpendent.

True. Only four linearly independent vectors are needed to span R4\R^4.

(b) Suppose that there are 6 vectors in R4\R^4, it must span R4\R^4.

False. At least four linearly independent vectors are needed to span R4\R^4. If at least four of the six are the same or are multiples of each other, then they cannot R4\R^4.

(c) Suppose that there are 4 vectors in R6\R^6, it must be linearly independent.

False. If they are not distinct vectors or are multiples of each other, then they would be linearly dependent.

(d) Suppose that there are 4 vectors in R6\R^6, it cannot span R6\R^6.

True. At least six linearly independent vectors are needed to span R6\R^6.

3. Find a basis for the kernel and image of the following matrices and compute its dimensions. A=[124222461123411],B=[123369246301]A =\begin{bmatrix} 1 & 2 & 4 & −2 & 2 \\ 2 & 4 & 6 & 1 & 1 \\ 2 & 3 & 4 & 1 & 1\end{bmatrix},B =\begin{bmatrix} 1 & −2 & 3 \\ −3 & 6 & −9 \\ −2 & 4 & −6 \\ 3 & 0 & −1\end{bmatrix}

Using our brainpower, we find that the RREF of AA and BB are given by:

rref(A)=[10022010530015232]x3=52x432x5x2=5x4+3x5x1=2x42x5x4,x5Rker(A)={(2x42x55x4+3x552x432x5x4x5):x4,x5R}={x(255210)+y(233201):x,yR}\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & -2 & 2 \\ 0 & 1 & 0 & 5 & -3 \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{3}{2} \end{bmatrix} \\ \therefore x_3 = \frac{5}{2} x_4 - \frac{3}{2} x_5 \\ x_2= -5x_4 + 3x_5 \\ x_1 = 2x_4 - 2x_5 \\ x_4,x_5 \in \R \\ \therefore\ker(A) = \Set{ \begin{pmatrix} 2x_4 - 2x_5 \\ -5x_4 + 3x_5 \\ \frac{5}{2} x_4 - \frac{3}{2} x_5 \\ x_4 \\ x_5 \end{pmatrix}: x_4, x_5 \in \R } = \Set{ x\begin{pmatrix} 2 \\ -5 \\ \frac{5}{2} \\ 1 \\ 0 \end{pmatrix} + y\begin{pmatrix} -2 \\ 3 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix} : x, y \in \R }

A basis of ker(A)\ker(A) is {(255210),(233201)}\Set{ \begin{pmatrix} 2 \\ -5 \\ \frac{5}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix} } and its dimension is 22.

Note that the pivots in rref(A)\operatorname{rref}(A) are located in columns one, two, and three. As such, the basis of Im(A)\operatorname{Im}(A) are the corresponding column vectors in AA.

A basis of Im(A)\operatorname{Im}(A) is {(122),(234),(464)}\Set{\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix},\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix},\begin{pmatrix} 4 \\ 6 \\ 4 \end{pmatrix}} and its dimension is 33.

rref(B)=[10130153000000]x2=53x3x1=13x3x3Rker(B)={(13x353x3x3):x3R}={x(13531):xR}\operatorname{rref}(B) = \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & -\frac{5}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \therefore x_2 = \frac{5}{3}x_3 \\ x_1 = \frac{1}{3}x_3 \\ x_3\in\R \\ \therefore\ker(B) = \Set{ \begin{pmatrix} \frac{1}{3}x_3 \\ \frac{5}{3}x_3 \\ x_3 \end{pmatrix}: x_3 \in \R } = \Set{ x \begin{pmatrix} \frac{1}{3} \\ \frac{5}{3} \\ 1 \end{pmatrix}: x\in\R }

A basis of ker(B)\ker(B) is {(13531)}\Set{ \begin{pmatrix} \frac{1}{3} \\ \frac{5}{3} \\ 1 \end{pmatrix} } and its dimension is 11.

Note that the pivots in rref(B)\operatorname{rref}(B) are located in columns one and two. As such, the basis of Im(B)\operatorname{Im}(B) are the corresponding column vectors in BB.

A basis of Im(B)\operatorname{Im}(B) is {(1323),(2640)}\Set{\begin{pmatrix} 1 \\ -3 \\ -2 \\ 3 \end{pmatrix},\begin{pmatrix} -2 \\ 6 \\ 4 \\ 0 \end{pmatrix}} and its dimension is 22.

4. Let S={[123],[456],[789],[1012],[1345]}S = \Set{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}, \begin{bmatrix} 10 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 13 \\ 4 \\ 5 \end{bmatrix}}. Is it possible to extract a basis for R3\R^3 from the set SS? Explain.

Let PP be a matrix composed of the vectors in SS such that

P=(14710132581436925).P = \begin{pmatrix} 1 & 4 & 7 & 10 & 13 \\ 2 & 5 & 8 & 1 & 4 \\ 3 & 6 & 9 & 2 & 5 \end{pmatrix}.

Then,

rref(P)=(101010120100011).\operatorname{rref}(P) = \begin{pmatrix} 1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.

Notice rank(P)=3\operatorname{rank}(P) = 3. As such, there exists three linearly independent vectors in SS (which are the basis of Im(P)\operatorname{Im}(P)), namely:

{(123),(456),(1012)}\Set{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 10 \\ 1 \\ 2 \end{pmatrix} }

which are sufficient to span R3\R^3.

5. Let A be the 6×46\times4 matrix with A=[v1v2v3v4]A = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ | & | & | & |\end{bmatrix}. Suppose that after Gaussian elimination, the row echelon form of AA is given by [120300310002000000000000]\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix}

(i) Find the rank of AA.

The three pivots in the row echelon form tells us that rank(A)=3\operatorname{rank}(A)=3.

(ii) Find a basis for the ker(A)\operatorname{ker}(A). What is its dimension?

rref[120300310002000000000000]=[120000100001000000000000]ker(A)={(2x2x200):x2R}={x(2100):xR}\operatorname{rref}\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \therefore\ker(A) = \Set{ \begin{pmatrix} -2x_2 \\ x_2 \\ 0 \\ 0 \end{pmatrix}: x_2\in\R } = \Set{ x\begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}: x\in\R }

A basis for ker(A)\ker(A) is {(2100)}\Set{\begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}} and its dimension is 11.

(iii) Find the subset of the columns of AA so that it forms a basis for the Im(A)\operatorname{Im}(A). What is the dimension of Im(A)\operatorname{Im}(A)?

The pivots in the row echelon form of AA are at columns one, three, and four. Correspondingly, the basis for Im(A)\operatorname{Im}(A) is {v1,v3,v4}\set{\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4} and its dimension is 33.

6. Book Question 26, 27, 53, 55, 56.

In Exercises 25 through 30, find the matrix BB of the linear transformation T(x)=AxT(\vec{x})=A\vec{x} with respect to the basis B=(v1,,vm)\mathfrak{B}=(\vec{v}_1,\ldots,\vec{v}_m).

26. A=[0123];v1=[12],v2=[11]A = \begin{bmatrix} 0 & 1 \\ 2 & 3\end{bmatrix};\vec{v}_1 =\begin{bmatrix} 1 \\ 2\end{bmatrix},\vec{v}_2 =\begin{bmatrix} 1 \\ 1\end{bmatrix}

Let PP be a matrix composed of column vectors {v1,v2}\set{\vec{v}_1, \vec{v}_2} such that P=(1121)P = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}.

Then:

P1AP=BB=(1121)1(0123)(1121)=(1121)(0123)(1121)=(6443)P^{-1}AP = B \\ \begin{align*} \\ \therefore B &= \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 6 & 4 \\ -4 & 3 \end{pmatrix} \end{align*}

27. A=[424212424];v1=[212],v2=[021],v3=[101]A = \begin{bmatrix} 4 & 2 & −4 \\ 2 & 1 & −2 \\ −4 & −2 & 4\end{bmatrix};\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ −2\end{bmatrix},\vec{v}_2 =\begin{bmatrix} 0 \\ 2 \\ 1\end{bmatrix},\vec{v}_3 =\begin{bmatrix} 1 \\ 0 \\ 1\end{bmatrix}

Let PP be a matrix composed of column vectors {v1,v2,v3}\set{\vec{v}_1,\vec{v}_2,\vec{v}_3} such that P=(201120211)P=\begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix}.

Then:

P1AP=BB=(201120211)1(424212424)(201120211)=19(212141524)(424212424)(201120211)=(900000000)P^{-1}AP = B \\ \begin{align*} \therefore B &= \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \\ &= \frac{1}{9}\begin{pmatrix} 2 & 1 & -2 \\ -1 & 4 & 1 \\ 5 & -2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{align*}

53. Consider the basis B\mathfrak{B} of R2\R^2 consisting of the vectors [12]\begin{bmatrix} 1 \\ 2\end{bmatrix} and [34]\begin{bmatrix} 3 \\ 4\end{bmatrix}. We are told that [x]B=[711]\begin{bmatrix} \vec{x}\end{bmatrix}_\mathfrak{B} = \begin{bmatrix} 7 \\ 11\end{bmatrix} for a certain vector x\vec{x} in R2\R^2. Find x\vec{x}.

Let P=(1324)P = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}. Then:

x=P[x]B=(1324)(711)=(4058)\begin{align*} \vec{x} &= P[\vec{x}]_\mathfrak{B} \\ &= \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 11 \end{pmatrix} \\ &= \begin{pmatrix} 40 \\ 58 \end{pmatrix} \end{align*}

55. Consider the basis B\mathfrak{B} of R2\R^2 consisting of the vectors [11]\begin{bmatrix} 1 \\ 1\end{bmatrix} and [12]\begin{bmatrix} 1 \\ 2\end{bmatrix} and let R\mathfrak{R} be the basis consisting of [12]\begin{bmatrix} 1 \\ 2\end{bmatrix} and [34]\begin{bmatrix} 3 \\ 4\end{bmatrix}. Find a matrix PP such that [x]R=P[x]B\begin{bmatrix} \vec{x}\end{bmatrix}_\mathfrak{R} = P \begin{bmatrix} \vec{x}\end{bmatrix}_\mathfrak{B}, for all x\vec{x} in R2\R^2.

Let UU and VV be a matrix composed of the basis vectors of B\mathfrak{B} and R\mathfrak{R} where

U=(1112),V=(1324).U = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\quad V = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}.

By definition:

x=U[x]Bx=V[x]R\vec{x} = U[\vec{x}]_\mathfrak{B} \\ \vec{x} = V[\vec{x}]_\mathfrak{R}

Applying the inverse for one of them yields:

V1x=[x]RV^{-1}\vec{x} = [\vec{x}]_\mathfrak{R}

Then, writing x\vec{x} as a UU transformation:

[x]R=V1x=V1UP[x]B\begin{align*} [\vec{x}]_\mathfrak{R} &= V^{-1}\vec{x} \\ &= \underbrace{V^{-1}U}_P [\vec{x}]_\mathfrak{B} \end{align*}

By comparison, P=V1UP=V^{-1}U.

P=V1U=(1324)1(1112)=(232112)1(1112)=(121120)=12(1210)\begin{align*} \therefore P &= V^{-1}U \\ &= \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} \end{align*}

56. Find a basis B\mathfrak{B} of R2\R^2 such that [12]B=[35]\begin{bmatrix} 1 \\ 2\end{bmatrix}_\mathfrak{B} = \begin{bmatrix} 3 \\ 5\end{bmatrix} and [34]B=[23]\begin{bmatrix} 3\\ 4\end{bmatrix}_\mathfrak{B} = \begin{bmatrix} 2 \\ 3\end{bmatrix}.

Let P=(v1v2)P = \begin{pmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{pmatrix} for some vectors v1,v2R2\vec{v}_1,\vec{v}_2\in\R^2.

Then, by x=ΔP[x]B\vec{x}\overset{\Delta}{=}P[\vec{x}]_\mathfrak{B}, we have:

{(12)=P(35)(34)=P(23)    P(3253)=(1324)P=(1324)(3253)1=(1324)(3253)=(127148)\begin{cases} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = P\begin{pmatrix} 3 \\ 5 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 4 \end{pmatrix} = P\begin{pmatrix} 2 \\ 3 \end{pmatrix} \end{cases} \implies P\begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \\ \begin{align*} \therefore P &= \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}\begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}\begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix} \\ &= \begin{pmatrix} 12 & -7 \\ 14 & -8 \end{pmatrix} \end{align*}

As such, B={(1214),(78)}\mathfrak{B} = \Set{\begin{pmatrix} 12 \\ 14 \end{pmatrix}, \begin{pmatrix} -7 \\ -8 \end{pmatrix}}.

Homework 6

  1. Consider the linear transformation considered in the previous homework. Determine if they are surjective or injective.
  1. Determine if the following statements are true or false. Give explanation.
  1. Let A be the 6×46\times4 matrix with A=[v1v2v3v4]A = \begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ | & | & | & |\end{bmatrix}. Suppose that after Gaussian elimination, the row echelon form of AA is given by [120300310002000000000000]\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix}
  1. Book Question 26, 27, 53, 55, 56.